Download PRUEBAS_DE_HIPOTESIS
Document related concepts
no text concepts found
Transcript
PRUEBAS DE HIPOTESIS ¿QUE ES UNA HIPOTESIS? Una hipótesis es una aseveración de una población elaborado con el propósito de poner a prueba, para verificar si la afirmación es razonable se usan datos; que ha sido formulada a través de la recolección de información y datos, aunque no está confirmada sirve para responder de forma tentativa a un problema con base científica. En el análisis estadístico se hace una aseveración, es decir, se plantea una hipótesis, después se hacen las pruebas para verificar la aseveración o para determinar que no es verdadera. Sus principales parámetros son: Media Varianza Proporción/Tasa ¿QUE ES UNA PRUEBA DE HIPOTESIS? La prueba de hipótesis es un procedimiento basado en la evidencia muestral y la teoría de probabilidad; se emplea para determinar si la hipótesis es una afirmación razonable. Prueba de una hipótesis: se realiza mediante un procedimiento sistemático de cinco paso: ¿QUE ES LA HIPOTESIS NULA? En muchos casos formulamos una hipótesis estadística con el único propósito de rechazarla o invalidarla. Así, si queremos decidir si una moneda está trucada, formulamos la hipótesis de que la moneda es buena (o sea p = 0,5, donde p es la probabilidad de cara). La hipótesis nula es aquella que nos dice que no existen diferencias significativas entre los grupos. Por ejemplo, supongamos que un investigador cree que si un grupo de jóvenes se somete a un entrenamiento intensivo de natación, éstos serán mejores nadadores que aquellos que no recibieron entrenamiento. Para demostrar su hipótesis toma al azar una muestra de jóvenes, y también al azar los distribuye en dos grupos: uno que llamaremos experimental, el cual recibirá entrenamiento, y otro que no recibirá entrenamiento alguno, al que llamaremos control. La hipótesis nula señalará que no hay diferencia en el desempeño de la natación entre el grupo de jóvenes que recibió el entrenamiento y el que no lo recibió. Una hipótesis nula es importante por varias razones: Es una hipótesis que se acepta o se rechaza según el resultado de la investigación. El hecho de contar con una hipótesis nula ayuda a determinar si existe una diferencia entre los grupos, si esta diferencia es significativa, y si no se debió al azar. La hipótesis nula es aquella por la cual indicamos que la información a obtener es contraria a la hipótesis de trabajo, entre otras. ¿QUE ES EL NIVEL DE SIGNIFICANCIA? Al contrastar una cierta hipótesis, la máxima probabilidad con la que estamos dispuestos a correr el riesgo de cometer un error de tipo I, se llama nivel de significación. En la práctica, es frecuente un nivel de significación de 0,05 ó 0,01, si bien se une otros valores. Si por ejemplo se escoge el nivel de significación 0,05 (ó 5%) al diseñar una regla de decisión, entonces hay unas cinco (05) oportunidades entre 100 de rechazar la hipótesis cuando debiera haberse aceptado; Es decir, tenemos un 95% de confianza de que hemos adoptado la decisión correcta. En tal caso decimos que la hipótesis ha sido rechazada al nivel de significación 0,05, lo cual quiere decir que tal hipótesis tiene una probabilidad 0,05 de ser falsa. ¿QUE ES EL P-VALOR? En contrastes de hipótesis, en Estadística, el p-valor está definido como la probabilidad de obtener un resultado al menos tan extremo como el que realmente se ha obtenido, suponiendo que la hipótesis nula es cierta. Es fundamental tener en cuenta que el p-valor está basado en la asunción de la hipótesis de partida (o hipótesis nula). ¿COMO SE USA EL P-VALOR? Se rechaza la hipótesis nula si el valor P asociado al resultado observado es igual o menor que el nivel de significación establecido, convencionalmente 0,05 ó 0,01, punto que se llama potencia del contraste. Es decir, el p-valor nos muestra la probabilidad de haber obtenido el resultado que hemos obtenido si suponemos que la hipótesis nula es cierta. Si el p-valor es inferior a la potencia del contraste nos indica que lo más probable es que la hipótesis de partida sea falsa. Sin embargo, también es posible que estemos ante una observación atípica, por lo que estaríamos cometiendo el error estadístico de rechazar la hipótesis nula cuando ésta es cierta basándonos en que hemos tenido la mala suerte de encontrar una observación atípica. Valor P es un valor de probabilidad por lo que oscila entre 0 y 1. Así, se suele decir que valores altos de valor P aceptan la H0 o, dicho de forma correcta, no permiten rechazar la H0. De igual manera, valores bajos de valor P rechazan la H0. ¿CUALES SON LOS TIPOS DE ERROR? Cualquiera sea la decisión tomada a partir de una prueba de hipótesis, ya sea de aceptación de la Ho o de la Ha, puede incurrirse en error: Un error tipo I: se presenta si la hipótesis nula Ho es rechazada cuando es verdadera y debía ser aceptada. La probabilidad de cometer un error tipo I se denomina con la letra alfa α Un error tipo II: se denota con la letra griega β se presenta si la hipótesis nula es aceptada cuando de hecho es falsa y debía ser rechazada. En cualquiera de los dos casos se comete un error al tomar una decisión equivocada. ¿QUE ES LA POTENCIA DE UNA PRUEBA ESTADISTICA? Potencia de una prueba. El complemento de la probabilidad de cometer un error del tipo II se conoce como potencia de una prueba estadística. La potencia de una prueba es la probabilidad de rechazar la hipótesis nula cuando de hecho esta es falsa y debería ser rechazada. Una manera en que podemos controlar la probabilidad de cometer un error del tipo II en un estudio, consiste en aumentar el tamaño de la muestra. La Potencia de una prueba β representa la probabilidad de que la hipótesis nula no sea rechazada cuando de hecho es falsa y debería rechazársele. La potencia de prueba 1-β representa la sensibilidad de la prueba estadística para detectar cambios que se presentan al medir la probabilidad de rechazar la hipótesis nula cuando de hecho es falsa y debería ser rechazada. La potencia de prueba estadística depende de qué tan diferente en realidad es la media verdadera de la población del valor supuesto.