Download capitulo_muestra.
Document related concepts
Transcript
SECCIÓN I BASES DE LA MICROBIOLOGÍA C La ciencia de la microbiología INTRODUCCIÓN La microbiología es el estudio de los microorganismos, grupo grande y diverso de microorganismos microscópicos que viven en forma de células aisladas o grupos de células; también comprende a los virus, que son microscópicos pero no son celulares. Los microorganismos influyen extensamente en la vida y constitución tanto física como química de nuestro planeta. Son los encargados de los ciclos de los elementos químicos indispensables para la vida, incluidos carbono, nitrógeno, azufre, hidrógeno y oxígeno; además, los microorganismos realizan más fotosíntesis que las plantas verdes. Se calcula que en la tierra existen 5 × 1030 células microbianas; excluyendo a la celulosa, éstas constituyen 90% de la biomasa de toda la biosfera. Los seres humanos tienen un relación estrecha con los microorganismos; más de 90% de las células del cuerpo corresponde a microbios. PRINCIPIOS BIOLÓGICOS ILUSTRADOS POR LA MICROBIOLOGÍA La diversidad biológica es más evidente en los microorganismos que en ninguna otra parte; estas criaturas no se pueden ver a simple vista sin ayuda. En cuanto a forma y función, ya sea una propiedad bioquímica o un mecanismo genético, el análisis de los microorganismos nos lleva hasta el límite de la comprensión biológica. Por lo tanto, la necesidad de originalidad (una prueba del mérito de una hipótesis científica) se logra por completo en la microbiología. Una hipótesis útil debe ofrecer una base para hacer una generalización y la diversidad microbiana proporciona el terreno donde siempre existe este reto. La predicción, que es la consecuencia práctica de la ciencia, es un producto creado por una mezcla de técnica y teoría. La A P Í T U L O 1 bioquímica, biología molecular y genética proporcionan los recursos necesarios para el análisis de los microorganismos. A su vez, la microbiología amplía el horizonte de estas disciplinas científicas. Quizá un biólogo describiría este intercambio como mutualismo, esto es, algo que beneficia a todas las partes que contribuyen. Un ejemplo de mutualismo microbiano es el de los líquenes. Los líquenes constan de un hongo y un compañero fototrópico, ya sea un alga (eucariota) o una cianobacteria (procariota). El componente fototrópico es el productor principal, mientras que el hongo proporciona sujeción y protección de los elementos. En biología, el mutualismo se denomina simbiosis, que es una relación continua de distintos organismos. Cuando el intercambio opera principalmente en beneficio de una de las partes, la relación se describe como parasitismo, en la que el hospedador proporciona el beneficio principal al parásito. Para el aislamiento y clasificación de un parásito (p. ej., una bacteria o virus patógeno) a menudo es necesario simular en el laboratorio el ambiente de crecimiento que proporcionan las células hospedadoras. Esta situación en ocasiones representa un reto importante para el investigador. Los términos “mutualismo”, “simbiosis” y “parasitismo” se relacionan con la ciencia de la ecología y los principios de la biología ambiental se encuentran implícitos en la microbiología. Los microorganismos son productos de la evolución, que es la consecuencia biológica de la selección natural que opera en una gran variedad de microorganismos distintos desde el punto de vista genético. Vale la pena tener en mente la complejidad de la historia natural antes de generalizar sobre los microorganismos, que forman el subgrupo más heterogéneo de las criaturas vivientes. Una división biológica importante separa a las eucariotas, microorganismos que contienen núcleo rodeado de una membrana, de las procariotas, en los que el DNA no se separa del 1 2 SECCIÓN I Bases de la microbiología citoplasma. Como se describirá más adelante y en el capítulo 2, se pueden hacer más distinciones entre las células eucariotas y procariotas. Por ejemplo, las primeras se distinguen por su tamaño relativamente grande y la presencia de organelos especializados, rodeados por membranas como las mitocondrias. Como se describe con detalle más adelante, las células eucariotas (o Eukarya, desde el punto de vista filogenético) comparten su estructura celular definida e historia filogenética. Algunos grupos de microorganismos eucarióticos son algas, protozoarios, hongos y mohos. Las propiedades singulares de los virus los colocan en un sitio aparte de las criaturas vivientes. Las eucariotas y procariotas son microorganismos puesto que contienen todas las enzimas necesarias para su multiplicación y poseen el equipo biológico necesario para la producción de energía metabólica. Por lo tanto, éstos se distinguen de los virus, que dependen de las células hospedadoras para estas funciones necesarias. VIRUS Los virus carecen de muchos de los atributos de las células, incluida la capacidad de multiplicarse. Sólo cuando infectan una célula adquieren el atributo clave de un sistema viviente: la reproducción. Se sabe que los virus infectan cualquier célula, incluidas las células microbianas. Las interacciones entre hospedador y virus tienden a ser altamente específicas y el espectro biológico de los virus refleja la diversidad de células hospedadoras potenciales. La diversidad de virus se expresa en su gran variedad de estrategias de multiplicación y supervivencia. Una partícula viral consta de una molécula de ácido nucleico, ya sea DNA o RNA, cubierta por una capa proteínica o cápside (en ocasiones también cubierta por una capa de lípidos, proteínas y carbohidratos). Las proteínas, a menudo glucoproteínas, en la cápside establecen la especificidad de la interacción del virus con su célula hospedadora. La cápside protege al ácido nucleico y facilita la fijación y penetración del virus en la célula hospedadora. Dentro de la célula, el ácido nucleico viral redirige la maquinaria enzimática del hospedador hacia funciones vinculadas con la multiplicación del virus. En algunos casos, la información genética del virus se incorpora en forma de DNA en el cromosoma del hospedador. En otros, la información genética del virus sirve como base para la producción celular y liberación de copias del virus. Este proceso exige la multiplicación del ácido nucleico viral y la producción de proteínas virales específicas. La maduración consiste en armar subunidades recién sintetizadas de ácido nucleico y proteínas hasta formar partículas virales maduras, que posteriormente son liberadas hacia el ambiente extracelular. Algunos virus más pequeños necesitan la ayuda de otro virus en la célula hospedadora para su multiplicación. El elemento delta, también conocido como virus de la hepatitis D, es demasiado pequeño como para codificar incluso una sola proteína de la cápside y necesita ayuda del virus de la hepatitis B para su transmisión. Se sabe que los virus infectan una gran variedad de hospedadores tanto vegetales como animales y además protistas, hongos y bacterias. Sin embargo, la mayor parte de los virus puede infectar tipos específicos de células de una sola especie de hospedador. Algunas enfermedades transmisibles de las plantas son causadas por viroides, moléculas pequeñas de RNA monocatenario y circular con enlaces covalentes estrechos que existen en forma de estructuras similares a varillas con numerosos pares de bases. Su tamaño varía de 246 a 375 nucleótidos de longitud. La variedad extracelular del viroide es RNA desnudo; carece de cápside de cualquier tipo. La molécula de RNA no contiene genes que codifican proteínas y, por lo tanto, el viroide depende por completo de las funciones del hospedador para su multiplicación. El RNA del viroide se multiplica por medio de la RNA-polimerasa dependiente del DNA de la planta hospedadora; la prioridad de esta enzima quizá contribuye a la patogenia del viroide. Se ha demostrado que los RNA de los viroides contienen secuencias de bases repetidas invertidas en sus extremos 3′ y 5′, característica de los transposones (cap. 7) y de los retrovirus. De esta manera, probablemente han evolucionado a partir de transposones o retrovirus por la eliminación de secuencias internas. En el capítulo 29 se describen las propiedades generales de los virus animales patógenos para el ser humano. Los virus bacterianos se describen en el capítulo 7. PRIONES Los grandes descubrimientos en los últimos 30 años han permitido la clasificación tanto molecular como genética del microorganismo transmisible que causa la visna de las ovejas, enfermedad degenerativa del sistema nervioso central de las ovejas. En los estudios ha sido posible identificar a la proteína específica de esta enfermedad en preparaciones obtenidas de cerebro de ovino infectado con esta encefalopatía y que puede reproducir los síntomas en ovejas sanas (fig. 1-1). Los esfuerzos por identificar otros componentes, como ácidos nucleicos, no han tenido éxito. Con el fin de distinguir a este elemento de los virus y viroides, 50 μm FIGURA 1-1 Prión. Priones aislados a partir del cerebro de un hámster infectado por visna de las ovejas. Esta enfermedad neurodegenerativa es causada por un prión. (Reimpresa con autorización de Stanley B. Prusiner/Visuals Unlimited.) CAPÍTULO 1 se introdujo el término prión para subrayar su naturaleza proteinácea e infecciosa. La forma celular de la proteína priónica (PrPc) es codificada por el DNA cromosómico del hospedador. La PrPc es una sialoglucoproteína con un peso molecular de 33 000 a 35 000 y un alto contenido de una estructura helicoidal α secundaria que es sensible a las proteasas y soluble en detergente. La PrPc se expresa en la superficie de las neuronas a través del anclaje de glucosilfosfatidilinositol en cerebros tanto infectados como no infectados. El único componente conocido del prión es una isoforma anormal de esta proteína (PrPres) y está vinculada con su potencial de transmisión. Posee la misma secuencia de aminoácidos que PrPc, pero difiere desde el punto de vista físico de la isoforma celular normal por su alto contenido de hoja o lámina β, su insolubilidad en detergentes, su tendencia a aglutinarse y su resistencia parcial a la proteólisis. Se cree que la PrPres induce a la PrPc para que se doble o se vuelva a doblar hasta adquirir la forma de prión. Existen otras enfermedades importantes causadas por priones (cuadro 1-1). El kuru, la enfermedad de Creutzfeldt-Jakob (CJD, Creutzfeldt-Jakob disease), la enfermedad de GerstmannSträussler-Scheinker y el insomnio familiar mortal afectan a los seres humanos. La encefalopatía espongiforme ovina, que se cree que es resultado de la ingestión de alimentos y harina de huesos preparados a partir de residuos de animales del matadero, ha causado la muerte de más de 184 000 cabezas de ganado La ciencia de la microbiología 3 en Gran Bretaña desde que se descubrió en 1985. Una nueva variedad de CJD (vCJD) en seres humanos, se ha vinculado con la ingestión de carne de res infectada por priones en el Reino Unido y Francia. Una característica común de todas estas enfermedades es la conversión de una sialoglucoproteína codificada por el hospedador en una forma resistente a la proteasa como consecuencia de la infección. Las enfermedades por priones en los seres humanos son singulares porque se manifiestan en forma de enfermedades esporádicas, genéticas e infecciosas. El estudio de la biología de los priones constituye un tema nuevo importante de investigación biomédica y aún se debe aprender mucho. PROCARIOTAS Las características distintivas de las procariotas son su tamaño relativamente pequeño, casi siempre del orden de 1 μm de diámetro, y la ausencia de una membrana nuclear. El DNA de casi todas las bacterias es un círculo con una longitud aproximada de 1 mm; este es el cromosoma procariótico. La mayor parte de las células procariotas posee un solo cromosoma. El DNA cromosómico se debe doblar más de 1 000 veces para acomodarse dentro de la membrana celular procariótica. Existe evidencia considerable que sugiere que quizá estos dobleces se realizan en CUADRO 1-1 Principales enfermedades en seres humanos y animales causadas por priones Tipo Nombre Causa Variante de enfermedad de Creutzfeldt-Jakoba Vinculada con la ingestión o inoculación de material infectado por priones Enfermedades por priones en seres humanos Adquiridas Kuru Enfermedad yatrógena de Creutzfeldt-Jakobb Esporádicas Enfermedad de Creutzfeldt-Jakob Se desconoce el origen de la infección Familiares Gerstmann-Sträussler-Scheinker Vinculadas con mutaciones específicas dentro del gen que codifica al PrP Insomnio familiar mortal Enfermedad de Creutzfeldt-Jakob Enfermedades por priones en animales a Ganado vacuno Encefalopatía espongiforme bovina Contacto con carne y alimento de harina de hueso contaminado con priones Ovejas Visna de las ovejas Ingestión de material contaminado con visna de las ovejas Venados, alces Enfermedad por desgaste crónico Ingestión de material contaminado con priones Mink Encefalopatía transmisible del mink Se desconoce la fuente de la infección Gatos Encefalopatía espongiforme felinaa Contacto con carne y alimento de harina de hueso contaminado con priones Vinculado con el contacto con materiales contaminados por encefalopatía espongiforme bovina. b Vinculado con materiales biológicos contaminados por priones como injerto de duramadre, trasplante de córnea, hormona de crecimiento humana derivada de cadáver o instrumentos quirúrgicos contaminados por priones. Reimpreso con autorización de ASM News 3:570, Dec, 2008. 4 SECCIÓN I Bases de la microbiología forma ordenada, acercando ciertas regiones del DNA. La región especializada de la célula que contiene al DNA se denomina nucleoide y se puede observar con un microscopio electrónico o un microscopio óptico después de someter a la célula a un tratamiento especial para poder observarlo. Por lo tanto, sería un error concluir que la diferenciación subcelular, claramente delimitada por membranas en las eucariotas, no existe en las procariotas. De hecho, estas últimas en algunos casos forman estructuras subcelulares unidas a membranas con funciones especializadas como los cromatóforos de las bacterias fotosintéticas (cap. 2). Diversidad procariótica El tamaño tan pequeño del cromosoma procariótico limita la cantidad de información genética que puede contener. La información más reciente basada en las secuencias del genoma indica que el número de genes dentro de una célula procariota varía de 468 en Mycoplasma genitalium a 7 825 en Streptomyces coelicolor y que muchos de estos genes se dedican a funciones básicas como generación de energía, síntesis macromolecular y multiplicación celular. Las procariotas poseen relativamente pocos genes que permiten la adaptación fisiológica del microorganismo a su ambiente. El espectro de ambientes procarióticos potenciales es inconcebiblemente amplio, por lo que el grupo procariótico comprende a una categoría heterogénea de especialistas, cada uno adaptado a un entorno circunscrito bastante estrecho. La gama de ambientes procarióticos se ilustra al considerar las estrategias utilizadas para generar energía metabólica. La principal fuente de energía para la vida es la luz solar. Algunas procariotas como las bacterias púrpuras convierten la energía luminosa en energía metabólica sin producción de oxígeno. Otras, ejemplificadas por las bacterias verde-azules (cianobacterias) producen oxígeno que proporciona energía a través de la respiración en ausencia de luz. Los microorganismos aerobios dependen de la respiración con oxígeno para obtener energía. Algunos microorganismos anaerobios utilizan aceptores de electrones distintos del oxígeno en la respiración. Muchos anaerobios llevan a cabo fermentaciones, de donde obtienen la energía a partir de la reorientación metabólica de los sustratos químicos para el crecimiento. La gran variedad química de sustratos potenciales para el crecimiento tanto aerobio como anaerobio se refleja en la diversidad de procariotas que se han adaptado a su utilización. Comunidades procarióticas Una estrategia útil de supervivencia para los especialistas es entrar en consorcios, organizaciones en las que las características fisiológicas de los diferentes microorganismos contribuyen a la supervivencia del grupo como un todo. Si los microorganismos dentro de una comunidad interrelacionada desde el punto de vista físico se derivan directamente a partir de una célula, la comunidad es un clon que contiene hasta 108 células. La biología de esta comunidad difiere considerablemente de la de una sola célula. Por ejemplo, el gran número de células prácticamente asegura que en el clon existe cuando menos una célula que posee una variante de cualquier gen en el cromosoma. Por lo tanto, la variabilidad genética (la fuente del proceso evolutivo llama- do selección natural) se encuentra asegurada en un clon. Entre mayor sea el número de células dentro de los clones, mayor es la probabilidad de ofrecer protección fisiológica cuando menos a algún miembro del grupo. Por ejemplo, los polisacáridos extracelulares confieren protección contra algunos elementos potencialmente mortales como los antibióticos o iones de metales pesados. La gran cantidad de polisacáridos producidos por numerosas células dentro de un clon permite que las que están en el interior sobrevivan al contacto con un elemento mortal a una concentración que aniquilaría a células individuales. Muchas bacterias utilizan un mecanismo de comunicación intercelular llamado percepción de quórum para regular la transcripción de los genes que participan en diversos procesos fisiológicos, como bioluminiscencia, transferencia conjugada de plásmidos y producción de los factores que confieren virulencia. La percepción de quórum depende de la producción de una o más moléculas de señales que se pueden difundir llamadas autoinductores o feromonas y que permiten a la bacteria vigilar su propia densidad de población celular. Es un ejemplo del comportamiento multicelular en las procariotas. Una característica distintiva de las procariotas es su capacidad de intercambio de pequeños paquetes de información genética. Esta información es llevada en los plásmidos, elementos genéticos pequeños y especializados que se pueden multiplicar cuando menos dentro de una línea celular procariótica. En algunos casos, los plásmidos se transfieren de una célula a otra y por lo tanto llevan consigo grupos de información genética especializada a través de una población. Algunos plásmidos exhiben un espectro amplio de hospedadores que les permite transmitir grupos de genes a distintos microorganismos. Algunos de los más importantes son los plásmidos de resistencia farmacológica, que provocan que varias bacterias sean resistentes al tratamiento con antimicrobianos. La estrategia de supervivencia de una sola línea celular procariótica conduce a un espectro de interacciones con otros microorganismos. Éstas comprenden relaciones simbióticas ilustradas por intercambios nutritivos complejos entre los microorganismos dentro del intestino humano. Estos intercambios benefician tanto a los microorganismos como a sus hospedadores humanos. Algunas veces las interacciones parasitarias son nocivas para el hospedador. La simbiosis o el parasitismo avanzado provocan la pérdida de ciertas funciones que no permiten el crecimiento del simbionte o parásito independientemente de su hospedador. Por ejemplo, los micoplasmas son parásitos procariotos que han perdido la capacidad para formar una pared celular. La adaptación de estos microorganismos a su ambiente parasitario ha tenido como resultado la incorporación de una cantidad considerable de colesterol en sus membranas celulares. El colesterol, que no se observa en otras procariotas, es asimilado a partir del ambiente metabólico del hospedador. La pérdida de la función también es ejemplificada por los parásitos intracelulares obligados, clamidias y rickettsias. Estas bacterias son muy pequeñas (0.2 a 0.5 μm de diámetro) y dependen de la célula hospedadora para muchos metabolitos esenciales y coenzimas. Esta pérdida de la función se refleja por la presencia de un genoma más pequeño con menos genes (cuadro 7-1). Al parecer, los ejemplos de mayor distribución de simbiontes bacterianos son los cloroplastos y las mitocondrias, que son los organelos que liberan energía de las eucariotas. Numerosas pruebas indican que los antecesores de estos organelos eran endosimbiontes, procariotas que establecieron simbiosis dentro CAPÍTULO 1 de la membrana celular del hospedador eucariótico ancestral. La presencia de múltiples copias de los organelos quizá contribuyó al tamaño relativamente grande de las células eucarióticas y a su potencial de especialización, rasgo que finalmente se ha reflejado en la evolución de los microorganismos multinucleares diferenciados. Clasificación de las procariotas Para comprender cualquier grupo de microorganismos, es necesario hacer una clasificación. Un buen sistema de clasificación permite al científico elegir las características con las que se puede categorizar con rapidez y precisión cualquier microorganismo nuevo. La categorización permite pronosticar muchos rasgos adicionales que comparten otros miembros de la misma categoría. En el ámbito hospitalario, la clasificación satisfactoria de un microorganismo patógeno ofrece la vía más directa para eliminarlo. Asimismo, la clasificación permite conocer las relaciones existentes entre diversos microorganismos y esta información tiene un gran valor práctico. Por ejemplo, un microorganismo patógeno se podrá eliminar durante un tiempo relativamente largo si su hábitat es ocupado por una variedad no patógena. En el capítulo 3 se describen los principios de la clasificación procariótica. Al principio es importante reconocer que cualquier característica procariótica puede servir como criterio potencial de clasificación. Sin embargo, no todos los criterios son tan efectivos para agrupar microorganismos. Por ejemplo, la posesión de DNA constituye un criterio inútil para distinguir a los microorganismos puesto que todas las células lo contienen. La presencia de un plásmido con un espectro amplio de hospedadores no es un criterio útil puesto que estos plásmidos existen en distintos hospedadores y no es necesario que existan todo el tiempo. Los criterios útiles pueden ser estructurales, fisiológicos, bioquímicos o genéticos. Las esporas, estructuras celulares especializadas que permiten la supervivencia en ambientes extremos, son criterios estructurales útiles para la clasificación puesto que sólo subgrupos bien clasificados de bacterias forman esporas. Algunos grupos de bacterias se pueden subdividir con base en su potencial para fermentar ciertos carbohidratos. Estos criterios son poco efectivos cuando se aplican a otros grupos bacterianos que carecen de potencial de fermentación. Existe una prueba bioquímica, la tinción de Gram, que constituye un criterio efectivo de clasificación puesto que la respuesta al colorante refleja diferencias fundamentales y complejas en la superficie celular bacteriana que dividen a la mayor parte de las bacterias en dos grupos principales. Los criterios genéticos cada vez se utilizan más en la clasificación bacteriana y muchos de estos avances han sido posibles gracias a la tecnología de DNA recombinante. Ahora es posible diseñar sondas de DNA que permiten identificar rápidamente microorganismos que poseen regiones genéticas específicas con una ascendencia común. Al comparar las secuencias del DNA de algunos genes se pudieron conocer las relaciones filogenéticas entre las procariotas. Es posible rastrear las líneas celulares ancestrales y agrupar a los microorganismos con base en sus afinidades evolutivas. A partir de estas investigaciones surgieron conclusiones sorprendentes. Por ejemplo, la comparación de las secuencias del citocromo c sugiere que todos los eucariotos, incluidos los seres humanos, se originaron a partir de uno de tres grupos de bacterias fotosintéticas púrpuras. Esta conclusión explica parcialmente el origen evolutivo de las eucariotas, pero La ciencia de la microbiología 5 no toma en cuenta por completo la suposición por lo general aceptada de que la célula eucariótica se deriva de la fusión evolutiva de distintas líneas celulares procarióticas. Bacterias y arqueobacterias: subdivisiones principales dentro de las procariotas Un logro importante en la filogenia molecular ha sido demostrar que las procariotas pertenecen a uno de dos grupos principales. La mayor parte de las investigaciones se ha orientado hacia un grupo, las bacterias. El otro grupo, las arqueobacterias, ha recibido menos atención hasta hace poco, en parte a causa de que muchos de sus representantes son difíciles de estudiar en el laboratorio. Por ejemplo, algunas arqueobacterias mueren al contacto con el oxígeno y otras crecen a una temperatura que excede la del agua en ebullición. Antes de contar con indicios moleculares, los principales subgrupos de arqueobacterias parecían diferentes. Las metanógenas llevan a cabo una respiración anaerobia que genera metano; las halófilas necesitan una concentración muy elevada de sal para crecer; y las termoacidófilas necesitan una temperatura elevada y gran acidez. Ahora se sabe que estas procariotas comparten rasgos bioquímicos como la pared celular o los componentes de la membrana que los colocan en un grupo completamente aparte del de los demás microorganismos vivientes. Un rasgo intrigante que comparten las arqueobacterias y eucariotas es la presencia de intrones dentro de los genes. No se ha establecido la función de los intrones (segmentos de DNA que interrumpen al DNA informativo dentro de los genes). Lo que se sabe es que los intrones representan una característica fundamental que comparte el DNA de las arqueobacterias y eucariotas. Este rasgo común ha originado la hipótesis de que, al igual que las mitocondrias y cloroplastos parecen ser derivados evolutivos de las bacterias, el núcleo eucariótico se originó a partir de una arqueobacteria antecesora. PROTISTAS El “núcleo verdadero” de las eucariotas (del griego karyon, “núcleo”) constituye sólo una de sus características distintivas. Los organelos adheridos a la membrana, los microtúbulos y los microfilamentos de las eucariotas forman una estructura intracelular compleja distinta a la encontrada en las procariotas. Los elementos para la motilidad de las células eucarióticas son flagelos o cilios (estructuras complejas formadas por múltiples filamentos que difieren de los flagelos de las procariotas). La expresión genética en los eucariotos se lleva a cabo a través de una serie de eventos que logran la integración fisiológica del núcleo con el retículo endoplásmico, estructura que carece de contraparte en las procariotas. Las eucariotas forman un grupo aparte por la organización de su DNA celular en forma de cromosomas separados por un aparato mitótico distintivo durante la división celular. En general, la transferencia genética entre las eucariotas depende de la fusión de los gametos haploides para formar una célula diploide que contiene un conjunto completo de genes derivados de cada gameto. El ciclo vital de muchas eucariotas se lleva a cabo casi por completo en estado diploide, cualidad de la que carecen las procariotas. La fusión de los gametos para formar su progenie reproductiva constituye una función altamente específica y establece la base de la especie eucariótica. Este tér- 6 SECCIÓN I Bases de la microbiología mino se puede aplicar sólo en forma metafórica a las procariotas, que intercambian fragmentos de DNA a través de la recombinación. Los grupos taxonómicos de las eucariotas a menudo se basan en una serie de propiedades morfológicas compartidas y es importante señalar que muchos de los factores taxonómicos están ligados a la reproducción. Casi todas las especies eucarióticas exitosas son aquellas en las que las células afines, miembros de la misma especie, se pueden recombinar para formar descendencia viable. Las estructuras que contribuyen de manera directa o indirecta al proceso de la reproducción tienden a ser muy avanzadas, con modificaciones mínimas entre las especies afines, y conservadas. Las eucariotas microbianas (protistas) son miembros de cuatro grupos principales: algas, protozoarios, hongos y mohos. Es importante señalar que estos grupos no son necesariamente filogenéticos: algunos microorganismos afines se han clasificado por separado puesto que aún no se encuentran similitudes bioquímicas y genéticas de fondo. Algas El término “alga” se utiliza desde hace tiempo para referirse a los microorganismos que producen O2 como fruto de la fotosíntesis. Un subgrupo importante de estos microorganismos, las bacterias verde-azules o cianobacterias, son procariotas y ya no se llaman algas. Esta clasificación se reserva exclusivamente para los microorganismos eucariotos fotosintéticos. Todas las algas contienen clorofila en la membrana fotosintética de su cloroplasto subcelular. Muchas especies de algas son unicelulares. Otras algas forman estructuras multicelulares muy grandes. Los sargazos de algas cafés miden en ocasiones varios cientos de metros de longitud. Otras algas producen toxinas que son venenosas para el ser humano y otros animales. Los dinoflagelados, algas unicelulares, generan las mareas rojas en el océano (fig. 1-2). La marea roja producida por el dinoflagelado de la especie Gonyaulax es importante, puesto que este microorganismo produce neurotoxinas como saxitoxina y gonyautoxinas, que se acumulan en los mariscos (p. ej., almejas, mejillones, callo de hacha y ostiones) que se alimentan con este microorganismo. FIGURA 1-2 Microfotografía electrónica de un dinoflagelado Gymnodinium (4000×). (Reimpresa con autorización de David M. Phillips/Visuals Unlimited.) Cuando los seres humanos consumen estos mariscos presentan los síntomas de la intoxicación paralítica por mariscos e incluso pueden morir. Protozoarios Los protozoarios son organismos protistas unicelulares no fotosintéticos. Los protozoarios más primitivos son flagelados y se asemejan en muchos aspectos a algunos representantes de las algas. Probablemente los antecesores de estos protozoarios fueron algas que se tornaron heterótrofas, las necesidades alimentarias de estos microorganismos se satisfacen con compuestos orgánicos. La adaptación a un modo de vida heterótrofo en ocasiones se acompañó de pérdida de los cloroplastos y, de esta manera, las algas originaron a los protozoarios afines. Se han observado eventos similares en el laboratorio como resultado de una mutación o de una adaptación fisiológica. Al parecer, a partir de los protozoarios flagelados surgieron las variedades ameboides y ciliadas; se sabe que algunas formas intermedias poseen flagelos durante una fase de su ciclo vital y seudópodos (característicos de la ameba) en otra fase. Un cuarto grupo de protozoarios, los esporozoarios, son parásitos estrictos que casi siempre son inmóviles; la mayor parte se reproduce de manera sexual y asexual en generaciones alternas por medio de esporas. En el capítulo 46 se describen los protozoarios parásitos del ser humano. Hongos Los hongos son protistas no fotosintéticos que crecen en forma de aglomeración de filamentos ramificados y entrelazados (“hifas”) conocidos como micelios. A pesar de que las hifas poseen paredes cruzadas, éstas tienen perforaciones que permiten el paso libre del núcleo y citoplasma. Por lo tanto, el microorganismo completo es un cenocito (aglomeración multinucleada de citoplasma continuo) confinado dentro de una serie de tubos ramificados. Estos tubos, elaborados a base de polisacáridos como quitina, son homólogos con las paredes celulares. Los micelios se denominan mohos; unas cuantas variedades, las levaduras, no forman micelios pero se reconocen fácilmente como hongos por la naturaleza de su reproducción sexual y la presencia de formas de transición. Probablemente los hongos representan una rama evolutiva de los protozoarios; no tienen relación con los actinomicetos, que son bacterias con micelios a las que se parecen superficialmente. Las subdivisiones principales (filo) de los hongos son: Chytridiomycota, Zygomycota (cigomicetos), Ascomycota (ascomicetos), Basidiomycota (basidiomicetos) y los “deuteromicetos” (u hongos imperfectos). La evolución de los ascomicetos a partir de los ficomicetos se observa en un grupo de transición, cuyos miembros forman un cigoto que posteriormente se transforma en ascos. Se cree que los basidiomicetos provienen a su vez de los ascomicetos. La clasificación de los hongos y su importancia médica se describen en el capítulo 45. Mohos de fango Estos microorganismos se caracterizan por la presencia, durante una fase de su ciclo vital, de una masa multinucleada ameboide CAPÍTULO 1 La ciencia de la microbiología 7 Esporas Cuerpos fructíferos liberando esporas Germinación Mixamebas Cuerpo fructífero Sincicio A B FIGURA 1-3 Mohos de fango. A: Ciclo vital de un moho de fango acelular. B: Cuerpo fructífero de un moho de fango celular. (Reimpresa con autorización de Carolina Biological Supply/Phototake.) de citoplasma llamada sincicio. El sincicio de un moho de fango es análogo al micelio de un hongo verdadero. Ambos son cenocíticos. En este último, la circulación citoplásmica se confina a la red de tubos quitinosos, mientras que en el primero el citoplasma circula en cualquier dirección. Esta circulación provoca que el sincicio emigre en dirección de su fuente alimentaria, a menudo bacterias. En respuesta a una señal química, 3′,5′-AMP cíclico (cap. 7), el sincicio, que alcanza un tamaño macroscópico, se diferencia para formar un cuerpo con pedúnculo que produce células móviles individuales. Estas células, flageladas o ameboides, empiezan una nueva ronda en el ciclo vital del moho de fango (fig. 1-3). El ciclo a menudo empieza por la fusión sexual de células aisladas. El ciclo vital de los mohos de fango ilustra un tema central de este capítulo: la interdependencia de las formas vivientes. El crecimiento de los hongos de fango depende de los nutrientes que proporcionan las bacterias o, en algunos casos, las células vegetales. La reproducción de los mohos de fango a través de sincicios depende del reconocimiento intracelular y la fusión de las células de la misma especie. Para comprender bien las características de un microorganismo es importante conocer a los otros microorganismos con los que ha evolucionado y apreciar el espectro de respuestas fisiológicas que contribuyen a su supervivencia. PREGUNTAS DE REVISIÓN 1. ¿Cuál de los términos siguientes describe la interacción entre un hongo y un alga en un liquen? (A) Parasitismo (B) Simbiosis (C) Endosimbiosis (D) Endoparasitismo (E) Consorcio 2. ¿Cuál de los siguientes carece de ácido nucleico? (A) Bacterias (B) Virus (C) Viroides (D) Priones (E) Protozoarios 3. ¿Cuál de los siguientes no es protista? (A) Bacterias (B) Algas (C) Protozoarios (D) Hongos (E) Mohos de fango 4. ¿Cuál de los siguientes contiene simultáneamente DNA y RNA? (A) Bacterias (B) Virus (C) Viroides (D) Priones (E) Plásmidos 5. Un hombre de 65 años de edad manifiesta demencia progresiva a lo largo de varios meses acompañada de ataxia y somnolencia. El patrón del electroencefalograma exhibe paroxismos con voltajes altos y ondas lentas sugestivas de enfermedad de Creutzfeldt-Jakob. Esta enfermedad es causada por cuál de los siguientes: (A) Bacteria (B) Virus (C) Viroide (D) Prión (E) Plásmido Respuestas 1. B 3. A 2. D 4. A 5. D 8 SECCIÓN I Bases de la microbiología BIBLIOGRAFÍA Belay ED: Transmissible spongiform encephalopathies in humans. Annu Rev Microbiol 1999;53:283. [PMID: 10547693] Diener TO: Viroids and the nature of viroid diseases. Arch Virol 1999;15(Suppl):203. Lederberg J (editor): Encyclopedia of Microbiology, 4 vols. Academic Press, 1992. Olsen GJ, Woese CR: Th e winds of (evolutionary) change: Breathing new life into microbiology. J Bacteriol 1994;176:1. [PMID: 8282683] Pelczar MJ Jr, Chan ECS, Krieg NR: Microbiology: Concepts and Applications. McGraw-Hill, 1993. Priola SA: How animal prions cause disease in humans. Microbe 2008;3:568. Prusiner SB: Biology and genetics of prion diseases. Annu Rev Microbiol 1994;48:655. Reisser W (editor): Algae and Symbiosis: Plants, Animals, Fungi, Viruses, Interactions Explored. Biopress, 1992. Schloss PD, Handlesman J: Status of the microbial census. Microbiol Mol Biol Rev 2004;68:686. Sleigh MA: Protozoa and Other Protists. Chapman & Hall, 1990. Whitman WB, Coleman DC, Wiebe WJ: Prokaryotes: The unseen majority. Proc Natl Acad Sci USA 1998;95:6578. [PMID: 7826022]