Download Diapositiva 1 - Departamento de Física
Document related concepts
Transcript
Clase E3 Un objeto de gran importancia, cuyas propiedades no pueden obtenerse con simpleza mediante el teorema de Gauss: El Dipolo. Algunos rasgos cualitativos del campo de este objeto pueden deducirse sin cuentas, por simetría, pueden establecerse invarianzas y direcciones del campo. El calculo preciso del campo es un poco mas tedioso y la manera mas simple de encararlo es utilizar el principio de superposición y resolver el campo correspondiente a cada carga. Localmente como una carga negativa (sumidero de campo) Localmente como una carga positiva (fuente de campo) Un objeto de gran importancia, cuyas propiedades no pueden obtenerse con simpleza mediante el teorema de Gauss: El Dipolo. Algunos rasgos cualitativos del campo de este objeto pueden deducirse sin cuentas, por simetría, pueden establecerse invarianzas y direcciones del campo. El calculo preciso del campo es un poco mas tedioso y la manera mas simple de encararlo es utilizar el principio de superposición y resolver el campo correspondiente a cada carga. Localmente como una carga negativa (sumidero de campo) Tanto en el eje z como en (z=0) el campo tiene que estar en la dirección z y en dirección de su sumidero (la carga negativa) Localmente como una carga positiva (fuente de campo) Para un entendimiento cualitativo, el campo puede “extenderse” localmente por continuidad. Un objeto de gran importancia, cuyas propiedades no pueden obtenerse con simpleza mediante el teorema de Gauss: El Dipolo. q -q El flujo neto a través de esta superficie es cero (esto NO quiere decir que el campo sea cero) Un objeto de gran importancia, cuyas propiedades no pueden obtenerse con simpleza mediante el teorema de Gauss: El Dipolo. Algunos rasgos cualitativos del campo de este objeto pueden deducirse sin cuentas, por simetría, pueden establecerse invarianzas y direcciones del campo. El calculo preciso del campo es un poco mas tedioso y la manera mas simple de encararlo es utilizar el principio de superposición y resolver el campo correspondiente a cada carga. Después de hacer todas las cuentas con detalle, superponiendo el campo de cada carga individual se obtiene la formula del dipolo: Dos conclusiones importante, sin necesidad de inspeccionar todos los detalles de este campo (sin ser Funes): E (q) C ( E ) r2 c ( P ) E ( p) r3 Huellas dactilares de distintos objetos, el problema inverso. Distintos objetos (o categorias de objetos, i.e. un dipolo, una carga positiva, negativa etc…) pueden distinguirse si se conocen algunos aspectos basicos de los campos que generan, sin necesidad de conocer todo el detalle. E (q) C ( E ) r 2 c ( P ) E ( p) r3 El escaleo, una huella digital. La dependencia angular (y la existencia de un eje preferencial) es una segunda huella de un objeto eléctrico. El campo generado por un objeto preserva las simetrías del objeto. El problema inverso: Una situación típica en “la vida real”. Nótese que este problema es parecido a la aplicación practica que hemos hecho de Gauss, una medición en una superficie alejada de la carga es capaz de determinar la estructura del cambio. En general (como sucede con una carga puntual o una esfera cargada), esta medida es ambigua y un problema difícil es saber cuantos puntos medir (y cuales son los puntos mas informativos) para reconstruir un objeto a partir de mediciones distantes. Dos situaciones en el que el problema inverso (en el dominio de campos eléctricos) se vuelve imperioso: Los neurofisiólogos y (algunos) peces. Electro (y magneto) Encefalografia (EEG,MEG) El bagre eléctrico (no es Olmedo) Gauss subsampleada: El problema clásico de reconstruir una señal continua con un sampleo finito (discreto) de captores. (Tal como el sampleo de frecuencias por las células ciliares) Composición de composiciones: Solución simple a algun problema complejo. d Un problema aparentemente complejo. Dos planos cargados (con igual carga y signo opuesto). Nótese que esto corresponde a una especie de “dipolo” donde los elementos de base del dipolo no son cargas puntuales sino planos cargados. A este objeto se lo llama capacitor (o condensador en su version mas gaita) y es un integrante importante de los circuitos. Calcular su distribucion de campos es sorprendentemente sencillo. Lo mismo en notación mas simple Un plano con carga positiva (fuente de campo constante) z E (2 k ) zˆ Lo mismo en notación mas simple Un plano con carga positiva (sumidero de campo constante) z E (2 k ) zˆ La suma de dos planos se anula pasado ambos (justamente porque el campo es constante) z E (4 k ) zˆ El campo queda localizado entre los dos planos. E (4 k ) zˆ El capacitor, un objeto eléctrico importante. Volviendo a la función potencial: un capacitor define una rampa. E (4 k ) zˆ ¿Cuánto vale el potencial en cada tramo? E 0 V Const : C1 E 0 V Const : C2 E (4 k ) V z (4 k ) C Volviendo a la función potencial: un capacitor define una rampa. d 1Q d V d Q A A Q V 4 k d 4 k d A V Q V C z E (4 k ) zˆ Volviendo a la función potencial: un capacitor define una rampa. V Q V C z El capacitor, una rampa de potencial, energía acumulada en cargas en un estado de tensión. Si estas cargas tuviesen libertad de movimiento (empezamos a salir de la electrostática) descargarían el capacitor hasta un estado de equilibrio en el que los dos planos tiene la misma carga. El capacitor entonces estara descargado y habra perdido su energia. Algunos conceptos de dinámica de cargas, de energía y de materiales. + + + + + + + - E + - La fuerza ejercida por el capacitor a tres cargas libres (sin incluir otras fuerzas, como la interacción entre pares de partículas...) Usaremos el capacitor como caballito de batalla para estudiar el movimiento de cargas (como usamos el oscilador en mecánica). Siendo el campo constante y en una dimension, todo se hace mas sencillo que en un problema genérico. Veremos después que el capacitor es un elemento de base importante, representando rampas de potencial, encuentros entre superficies de cargas, archipresentes en casi todos los problemas. Fuerza ejercida por un capacitor a una carga “suspendida en un medio” + + + + + + + - E + - La fuerza ejercida por el capacitor a tres cargas. La dinámica de estas cargas dependerá de las fuerzas ejercidas sobre ellas y de su “libertad de movimiento” •Todos los medios, gases, fluidos, sólidos, están compuestos de partículas cargadas, y por lo tanto son sensibles a la presencia de campos eléctricos. •Las cargas en distintos medios tienen distinto tipo de movilidad. En algunas situaciones son electrones (partículas poco pesadas, con poca inercia) libres (con interacciones débiles con los núcleos del material), que pueden transitar a gran velocidad. A veces son moléculas cuya distribución de carga es deformable, generando dipolos, y otro gran repertorio de situaciones. •Cuando hay cargas movibles, los campos generan corrientes y estas corrientes, al modificar la distribución de cargas modifican el campo, lo cual genera otras corrientes... Esto implica que entender la dinámica de cargas resulta de resolver ecuaciones diferenciales, tal como vimos en mecánica. Fuerza ejercida por un capacitor a una carga “suspendida en un medio” + + + + + + + - E + - La fuerza ejercida por el capacitor a tres cargas. La dinámica de estas cargas dependerá de las fuerzas ejercidas sobre ellas y de su “libertad de movimiento” •Todos los medios, gases, fluidos, sólidos, están compuestos de partículas cargadas, y por lo tanto son sensibles a la presencia de campos eléctricos. •Las cargas en distintos medios tienen distinto tipo de movilidad. En algunas situaciones son electrones (partículas poco pesadas, con poca inercia) libres (con interacciones débiles con los núcleos del material), que pueden transitar a gran velocidad. A veces son moléculas cuya distribución de carga es deformable, generando dipolos, y otro gran repertorio de situaciones. •Cuando hay cargas movibles, los campos generan corrientes y estas corrientes, al modificar la distribución de cargas modifican el campo, lo cual genera otras corrientes... Esto implica que entender la dinámica de cargas resulta de resolver ecuaciones diferenciales, tal como vimos en mecánica. Fuerza ejercida por un capacitor a una carga “suspendida en un medio” + + + + + + + - E + - La fuerza ejercida por el capacitor a tres cargas. La dinámica de estas cargas dependerá de las fuerzas ejercidas sobre ellas y de su “libertad de movimiento” •Todos los medios, gases, fluidos, sólidos, están compuestos de partículas cargadas, y por lo tanto son sensibles a la presencia de campos eléctricos. •Las cargas en distintos medios tienen distinto tipo de movilidad. En algunas situaciones son electrones (partículas poco pesadas, con poca inercia) libres (con interacciones débiles con los núcleos del material), que pueden transitar a gran velocidad. A veces son moléculas cuya distribución de carga es deformable, generando dipolos, y otro gran repertorio de situaciones. •Cuando hay cargas movibles, los campos generan corrientes y estas corrientes, al modificar la distribución de cargas modifican el campo, lo cual genera otras corrientes... Esto implica que entender la dinámica de cargas resulta de resolver ecuaciones diferenciales, tal como vimos en mecánica. Dinámica molecular integrada mentalmente + + + + + + E + + + + - - La fuerza ejercida por el capacitor a tres cargas. La dinámica de estas cargas dependerá de las fuerzas ejercidas sobre ellas y de su “libertad de movimiento” 2) Las cargas positivas se desplazan hacia la región de menor potencial (en la dirección del campo) y las cargas negativas (que en un mismo campo sienten una fuerza en el sentido opuesto) navegan contra el campo. Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + - E + + + + - La fuerza ejercida por el capacitor sobre cargas móviles en el medio entre los planos cargados. Las cargas se acercan a las placas de carga contraria. 2) Las cargas positivas se desplazan hacia la región de menor potencial (en la dirección del campo) y las cargas negativas (que en un mismo campo sienten una fuerza en el sentido opuesto) navegan contra el campo. Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + - E + + + + - La fuerza ejercida por el capacitor sobre cargas móviles en el medio entre los planos cargados. Las cargas se acercan a las placas de carga contraria. q=Qc-Qm 3) El resultado es que las cargas desplazadas apantallan las cargas del capacitor, anulando o disminuyendo el campo Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + - E + + + + - La fuerza ejercida por el capacitor sobre cargas móviles en el medio entre los planos cargados. Las cargas se acercan a las placas de carga contraria. q=Qc-Qm 3) El resultado es que las cargas desplazadas apantallan las cargas del capacitor, anulando o disminuyendo el campo Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + E - El campo electrico induce un par de fuerzas (torque) sobre un dipolo, que lo alinea con el campo electrico, de manera tal que la carga negativa del diplo se enfrenta a la placa positiva del capacitor y viceversa. 1) En medios que no tienen cargas libres pero que tienen moléculas polarizables, el campo eléctrico también perturba la distribución de cargas. Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + +- - El campo electrico induce un par de fuerzas (torque) sobre un dipolo, que lo alinea con el campo electrico, de manera tal que la carga negativa del diplo se enfrenta a la placa positiva del capacitor y viceversa. 1) En medios que no tienen cargas libres pero que tienen moléculas polarizables, el campo eléctrico también perturba la distribución de cargas. Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + -+ - +E -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ - El campo electrico induce un par de fuerzas (torque) sobre un dipolo, que lo alinea con el campo electrico, de manera tal que la carga negativa del diplo se enfrenta a la placa positiva del capacitor y viceversa. 2) El proceso de alineación de los dipolos también resulta en un apantallamiento de las cargas que generan el campo y por lo tanto en una reducción del campo eléctrico. En que medida este proceso de depolarización molecular es capaz de apantallar el campo depende de la estructura molecular del medio y de hecho empíricamente, cada medio se caracteriza por un coeficiente de manera tal que: Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + - E El campo electrico induce un par de fuerzas (torque) sobre un dipolo, que lo alinea con el campo electrico, de manera tal que la carga negativa del diplo se enfrenta a la placa positiva del capacitor y viceversa. 2) El proceso de alineación de los dipolos también resulta en un apantallamiento de las cargas que generan el campo y por lo tanto en una reducción del campo eléctrico. En que medida este proceso de dolarización molecular es capaz de apantallar el campo depende de la estructura molecular del medio y de hecho empíricamente, cada medio se caracteriza por un coeficiente de manera tal que: E (4 k ) ε es la consatnte (o permitividad dielectrica, una caracterisitca del medio). Dinámica molecular integrada mentalmente (asumiendo escalas temporales disociables) + + + + + + -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ - El campo electrico induce un par de fuerzas (torque) sobre un dipolo, que lo alinea con el campo electrico, de manera tal que la carga negativa del diplo se enfrenta a la placa positiva del capacitor y viceversa. 2) El proceso de alineación de los dipolos también resulta en un apantallamiento de las cargas que generan el campo y por lo tanto en una reducción del campo eléctrico. En que medida este proceso de dolarización molecular es capaz de apantallar el campo depende de la estructura molecular del medio y de hecho empíricamente, cada medio se caracteriza por un coeficiente de manera tal que: E (4 k ) m ε es mínimo en el vació. Aumenta 1.0005 veces en el aire y 80 veces en el agua (a 20 grados) Las cargas de las placas son por supuesto también susceptibles a los campos si tienen libertad de movimiento. + + + + + + E - Las cargas que generan el campo eléctrico no están en equilibrio electrodinámico y por lo tanto si tienen libertad de movimiento, se desplazan. En general los electrones (cargas negativas) son las cargas mas dinámicas con lo que las corrientes suelen ser electrónicas. Las cargas de las placas son por supuesto también susceptibles a los campos si tienen libertad de movimiento. - + + + + E + + - Este flujo de cargas define una corriente que es proporcional a la cantidad de cargas (densidad de partículas carga por el valor de carga de cada partícula) y a su velocidad de desplazamiento. Nótese (después lo veremos en mas detalle) que ambas corrientes contribuyen a cargar positivamente la placa de la derecha (o negativamente la de la izquierda) con lo que “deberian tener el mismo signo”. Las cargas de las placas son por supuesto también susceptibles a los campos si tienen libertad de movimiento. + + - + φ = constante (por lo que todas las derivadas son cero y no hay campo) + -+ + En presencia de cargas con libertad de movimiento, las cargas se desplazan hacia su posición de equilibrio, y este desplazamiento contribuye a generar un campo opuesto. En libertad de movimiento, en una situación de equilibrio no debe haber campo, o dicho de otra manera, el potencial a lo largo de una zona donde las cargas tienen libertad de movimiento (conductor) es constante. ¿Cuánta energía es necesaria para “cargar” esta columna de agua (capacitor)? Las cargas de las placas son por supuesto también susceptibles a los campos si tienen libertad de movimiento. - En el proceso de descarga del capacitor, este pierde energía, según la misma regla que habíamos visto en mecánica. + - dW Fdx Q -Q + + + E + + Nótese que cada carga se ha desplazado una distancia d a favor de un campo pero, a medida que el capacitor se va descargando, esta carga absorbe menos energía. O, a la inversa, en el proceso de carga, a medida que se va cargando el campo es mayor y por lo tanto remontar cargas contra el campo requiere una mayor inversión de energía. La energía de un capacitor: Otra integral en pasos... + + - + + -+ + La energía de un capacitor es independiente del proceso de carga. Este resultado general es equivalente (resulta del hecho de) que el potencial sea solo una función del espacio y no dependa del camino. dW Fdx 1) Se empieza de una configuracion de equilibrio, equipotencial. La energía de un capacitor: Otra integral en pasos... -- -+ +- ++ -+ ++ ++-+ -- -+ +- ++ -+ ++ ++-+ La energía de un capacitor es independiente del proceso de carga. Este resultado general es equivalente (resulta del hecho de) que el potencial sea solo una función del espacio y no dependa del camino. dW Fdx 2) Cortamos el conductor y se sumerge el capacitor en un material: En este momento las placas no están cargadas con lo que el campo vale cero y mover cargas no requiere (ni entrega) trabajo. El campo del conductor es: E Q 0 A La energía de un capacitor: Otra integral en pasos... -- -+ +-+ -+ ++ ++-+ q=0 dq + -- -+ +- ++ -+ ++ ++-+ La energía de un capacitor es independiente del proceso de carga. Este resultado general es equivalente (resulta del hecho de) que el potencial sea solo una función del espacio y no dependa del camino. q=0 dW Fdx 2) Se empuja una carga (es equivalente que sea una positiva de izquierda a derecha o negativa de derecha a izquierda, la corriente es la misma...). El trabajo es cero, ya que en estos momentos no hay campo, podemos de cualquier manera expresar esta contribución como q W Fd dq E (q) d d dq A La energía de un capacitor: Otra integral en pasos... -- + +-++ ++-+ q=-3 dq + -- -+ ++ +- + -+ +++ ++-+ q=3 dW Fdx 3) Seguimos integrando (carga por carga), estamos haciendo una integración numérica sobre las cargas. Ahora el trabajo va a ser proporcional a las cargas que ya han sido desplazadas (3) q W Fd dq E (q) d d dq A La energía de un capacitor: Otra integral en pasos... -- -q=-3 dq + -++ -- -+ +++ +- + -+++++ ++++ +-+ q=3 dW Fdx 4) El capacitor esta cargado. El trabajo total es la suma (integral) de una serie de pasos, donde la contribución de cada paso esta dada por: El campo en el paso n q W Fd dq E (q) d d dq A La distancia El diferencial de carga transportado La energía de un capacitor: Otra integral en pasos... -- -- -++ -- -+ +++ +- + -+++++ ++++ +-+ dq + q=-3 q=3 dW Fdx 5) Por lo tanto, la energía del capacitor es: El campo en el paso n Q q W W d dq A 0 La distancia El diferencial de carga transportado La energía de un capacitor: Otra integral en pasos... -- -- -++ -- -+ +++ +- + -+++++ ++++ +-+ dq + q=-Q q=Q 5) Por lo tanto, la energía del capacitor es: q d Q2 Q2 W W d dq A 2 A 2C 0 Q Clase E4 Capacitores, alguna aplicacion, y emergencia de circuitos simples. A partir del capacitor, y aplicando esta idea a un problema concreto, veremos que hay por lo menos dos otras estructuras importantes para entender un circuito de carga: Resistencias y Baterías. ¿Cuál es o capacitor mais grandi do mundo? Dos capacitores clásicos: El mundo y las neuronas de Laplagne Laplagne producciones Feynman, Volumen 2, Capitulo 9 El campo eléctrico en la atmosfera, un capacitor que se descarga. + + + + + + E + + - La tierra tiene una carga negativa respecto de la atmósfera (hecho empírico) con un potencial que cambia a un ritmo de 100V por metro! ¿Por que no nos electrocutamos? El campo eléctrico en la atmosfera, un capacitor que se descarga. + + + + + + E + + - La tierra tiene una carga negativa respecto de la atmósfera (hecho empírico) con un potencial que cambia a un ritmo de 100V por metro! En la atmósfera hay iones que pueden desplazarse, por lo que este campo eléctrico genera una corriente. El campo eléctrico en la atmosfera, un capacitor que se descarga. + + + + + + E + + - fuentes de radioactividad (como el uranio) están en superficie, la ionización debe disminuir con la altura. - Según lo que sabemos de física atómica, una de las fuentes principales de ionización son emisiones nucleares, de algunos elementos radioactivos. Dado que las En la atmósfera hay iones que pueden desplazarse, por lo que el campo eléctrico genera una corriente. EN GLOBO A MEDIR LA IONIZACION EN FUNCION DE LA ALTURA From a consideration of the immense volume of newly discovered facts in the field of physics, especially atomic physics, in recent years it might well appear to the layman that the main problems were already solved and that only more detailed work was necessary. Iotización en función de la altura. El descubrimiento de los rayos cósmicos. h + + + + + + E + + - fuentes de radioactividad (como el uranio) están en superficie, la iotización debe disminuir con la altura. - Según lo que sabemos de física atómica, una de las fuentes principales de iotización son emisiones nucleares, de algunos elementos radioactivos. Dado que las EN GLOBO A MEDIR LA IONIZACION EN FUNCION DE LA ALTURA En 1936, sin globo y Nobel mediante Iotización en función de la altura. El descubrimiento de los rayos cósmicos. h + + + + + + E + + - fuentes de radioactividad (como el uranio) están en superficie, la iotización debe disminuir con la altura. - Según lo que sabemos de física atómica, una de las fuentes principales de iotización son emisiones nucleares, de algunos elementos radioactivos. Dado que las Sin embargo, Hess descubrio que a ionizacion decrece inicialmente pero luego vuelve a aumentar indicando fuentes de ionizacion mas alla de la atmosfera(cosmicas) El campo eléctrico en la atmosfera, un capacitor que se descarga. + + + + + + + - + - - Los iones por radiación conforman pequeñas estructuras con gran movilidad dentro del aire, por lo que la corriente es grande. El campo eléctrico en la atmosfera, un capacitor que se descarga. + + + + + + + - En la atmósfera existen otros iones mucho mas grandes llamados “nucleos”, que resultan de iones liquidos (sales) del mar que se evaporan. Estos iones tienen mucha menos movilidad y por lo tanto generan, con el mismo campo, corrientes menores. El campo eléctrico en la atmosfera, un capacitor que se descarga. + + + + + + + - En la atmósfera existen otros iones mucho mas grandes llamados “nucleos”, que resultan de iones liquidos (sales) del mar que se evaporan. Estos iones tienen mucha menos movilidad y por lo tanto generan, con el mismo campo, corrientes menores. Veremos que esta regla de proporcionalidad entre un campo aplicado (o una diferencia de potencial) y la corriente inducida es un hecho empírico en una gran cantidad de medios, y define otra propiedad (geométrica y material, como la capacidad), llamada RESISTENCIA. Las corrientes en la atmósfera debido a grandes y pequeños iones no se suman: Un ejemplo de un problema no lineal (DE TRAFICO) + + + + + + - + + - - En presencia de ambos iones, las corrientes no se suman (tal como sucedería en un problema lineal) sino que los grandes iones forman estructuras pesadas con los pequeños que se desplazan a velocidades lentas. Como la formación de grandes iones depende de humedad, polución, suciedad, la corriente en la atmósfera es muy inestable. ¿Quien carga al capacitor que se descarga? + + + + + + - - + + + - En promedio, sin embargo, esta corriente es capaz de descargar la tierra (de equiparar las cargas y por lo tanto el potencial entre la superficie de la tierra y de la atmósfera) en media hora. Porque la superficie de la tierra permanece cargada. - ¿Quien carga al capacitor que se descarga? + + + + + + - - + + + - En promedio, sin embargo, esta corriente es capaz de descargar la tierra (de equiparar las cargas y por lo tanto el potencial entre la superficie de la tierra y de la atmósfera) en media hora. Porque la superficie de la tierra permanece cargada. - Veremos que esto equivale a preguntarse por la existencia de otro integrante básico de los ? circuitos ¿quien es la batería? El campo electrico es maximo (en todo el mundo) a las 19 hs de Londres. ¿Cómo puede ser? Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. Altura (metros) 1) Corrientes de aire por temperatura (hasta aquí no hay cargas) Temperatura El aire mas caliente, en la superficie sube y a medida que sube se va enfriando. Si no hubiese sol, esto alcanzaría un equilibrio estacionario pero como el sol sigue calentando, este fenómeno se repite, con aire que se sigue calentando abajo generando nuevas corrientes livianas que siguen subiendo y así... Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. Altura (metros) 2) El aire húmedo sube hasta grandes alturas y forma partículas de hielo. Temperatura A medida que va subiendo el aire se enfría. Pero si este es húmedo, tarda mas tiempo en enfriarse y por lo tanto sigue subiendo hasta grandes alturas (por encima de los aviones) Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. Altura (metros) 3) El aire húmedo, muy alto y frió, forma partículas de hielo que caen. Temperatura El aire, a grandes alturas se enfría mucho y en contacto con algunas partículas se empieza a formar hielo. Como con los cristales, el hielo genera pequeñas agregaciones, se vuelve una partícula pesada, y cae. Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. + - + + + + + + 4) El campo eléctrico entra en juego. La partícula que cae se polariza. Temperatura - - - Aquí empiezan a divergir varias teorías. Una de ellas (Wilson) se basa en el siguiente argumento: La partícula de hielo se polariza por la presencia del campo atmosférico y su caida genera el siguiente proceso: Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. +++- +- ++- +- +- + + + + + + 6) Si solo hubiese estos jugadores, todo se arreglaría así y como en otro sistema pasivo, las cargas evolucionan para amainar el campo. - - - Lo que sucedería en una situación pasiva. Aquí, no hay ninguna batería y el campo va desapareciendo por el movimiento de cargas “a favor de la corriente” que generan “menos corriente”. Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. +- + + + + + + + 6) En presencia de otros iones (mas livianos que los dipolos de hielo) en la atmósfera se da el siguiente fenómeno de choque eléctrico. - - - Sin embargo, por la interacción, mecánica eléctrica y de fluidos entre los iones atmosféricos y las partículas polarizadas que caen se da un fenómeno paradójico. Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. + + 6) En presencia de otros iones (mas livianos que los dipolos de hielo) en la atmósfera se da el siguiente fenómeno de choque eléctrico. +- + + + + Interacción repulsiva entre cargas del mismo signo + - - - Interacción atractiva entre cargas de distinto signo - El hielo polarizado repele por choque eléctrico las cargas positivas (que tampoco pueden pegarse a la cola del dipolo por la estela del fluido) y se pega a cargas negativas, con lo que este dipolo arrastra hacia la superficie una carga negativa. Una teoría en medio de muchas teorías “buenas pero lejos de perfectas”. Un ejemplo donde se mezclan: electro, fluidos, mecanica y termodinamica. +- + + + + + + Fuerza eléctrica ejercida por el campo - Desplazamiento por “arrastre”. - - - 6) Este desplazamiento de una carga negativa contra la dirección de la corriente establecida por el campo entrega energía al campo, cargándolo, estableciendo una batería. ¿De donde viene esta energía? El hielo polarizado repele por choque eléctrico las cargas positivas (que tampoco pueden pegarse a la cola del dipolo por la estela del fluido) y se pega a cargas negativas, con lo que este dipolo arrastra hacia la superficie una carga negativa. El resultado de todo este proceso (y de algunos otros que aquí omitimos):Un objeto de carga extenso + - +- Cargas negativas empujadas contra el campo. Otro fenómeno secundario que aquí ignoramos. Distribución de cargas en una nube (célula) previo a una tormenta eléctrica (y su modelo simplificado) La batería en marcha El ultimo paso, una vez que las cargas negativas han llegado cerca de la superficie, creando un campo invertido, dan el ultimo salto de manera violenta. En general, los materiales dieléctricos tienen un punto de quiebre (ruptura dieléctrica) donde se producen estas guías de grandes cargas que avanzan violentamente. La batería en marcha, las neuronas de laplagne y una curiosa coincidencia morfologica. El ultimo paso, una vez que las cargas negativas han llegado cerca de la superficie, creando un campo invertido, dan el ultimo salto de manera violenta. En general, los materiales dieléctricos tienen un punto de quiebre (ruptura dieléctrica) donde se producen estas guías de grandes cargas que avanzan violentamente.