Download Se cree que Europa, una de las 16 lunas de Júpiter, tiene una

Document related concepts

Calor sensible wikipedia , lookup

Calor latente wikipedia , lookup

Humedad del aire wikipedia , lookup

Temperatura de la flama adiabática wikipedia , lookup

Estructura estelar wikipedia , lookup

Transcript
Nombre:
C.I.:
Examen Física General I (Biociencias – Geociencias)
4/8/2010
Algunos datos que pueden ser útiles: densidad del agua: 1,0x103 kg/m3; calor específico del agua: 1,0 cal/g ºC; calor latente de fusión del hielo:
3,33 x 105 J/kg; calor latente de vaporización del agua: 2,26 x 106 J/kg; g=9,8 m/s2; 1 cal =4,186 J; 1 atm=1,013 x 105 Pa; R=8,31 J/ºK.mol;
densidad del Helio = 0,18 kg/m3; Calor específico del aire = 1000 J/kgºC; densidad del aire = 1,25 kg/m3; Calor específico del hielo =
2090 J/kgCº; densidad del hielo= 917 kg/m3; calor especifico del hierro sólido = 448 J/kgºK; densidad hierro = 7,80103kg/m3; calor
específico del vapor de agua=6,03x104 J/kgCº; calor específico del vidrio=837 J/kg Cº; Momento de inercia de una esfera respecto
a un eje que pasa por su centro = 2MR2/5; G = 6,67 x 10-11 Nm2/Kg2; RTierra = 6378 km; MTierra = 5,96 x 1024 kg
1.
Considere las siguientes afirmaciones:
i)
En un recipiente herméticamente cerrado con paredes rígidas y fijas, la presión de un gas ideal es directamente
proporcional a la temperatura absoluta.
ii)
A temperatura constante, las densidades de un gas ideal son inversamente proporcionales a las presiones que
soporta.
iii)
A temperatura constante, los volúmenes que ocupa una determinada masa de gas ideal son directamente
proporcionales a las presiones que soporta.
iv)
Al mantenerse el volumen constante, la presión de un gas ideal dentro de un recipiente herméticamente cerrado
depende sólo de la temperatura.
En referencia a las afirmaciones anteriores, señale cuál de las opciones es correcta:
a) i) y iii) son correctas
b) ii) y iii) son correctas c) i) y iv) son correctas
d) sólo iii) es correcta
e) todas son correctas
2.
La figura muestra dos bloques unidos entre sí por medio de una cuerda sin masa
que pasa por una polea sin fricción (y también sin masa) y una clavija también sin fricción.
Un extremo de la cuerda está unido a una masa m1 que está a una distancia R de la clavija.
El otro extremo de la cuerda se conecta a un bloque de masa m2 = 2m1 que descansa sobre
una mesa. ¿Cuál es el ángulo máximo  (medido desde la vertical como se muestra en la
figura) al que puede soltarse la masa m1 con el fin de que el bloque m2 no se levante de la
mesa?
2

3
2
b)  = arcsen  
3
1
c)  = arccos 
2
 2

d)  = arcsen
 2 


a)  = arccos
e) No es posible para esta relación de m1 y m2.
3.
En el final de su vida, una estrella de masa M = 2,2x10 30kg y radio R = 7,3x108 m, colapsa para formar una estrella de
neutrones. Antes del colapso el movimiento de rotación de la estrella en torno a su eje tenía un período de 32 días. Después del
colapso, se observa que la estrella da una vuelta completa sobre su eje en T = 1,0 s. Suponiendo que en el colapso de la estrella no
hubo pérdida de masa hacia el espacio, halle la densidad ρ de la estrella de neutrones.
(Suponga que la estrella es una esfera y que la densidad es uniforme antes y después del colapso).
a) ρ = 2,2x106 kg/m3
b) ρ = 6,2x1012 kg/m3
c) ρ = 3,7x109 kg/m3
d) ρ = 7,5x109 kg/m3
4.
En el instante inicial el bloque de 6kg se encuentra descendiendo a una
velocidad de 0,9m/s. Luego de descender una distancia de 2m se detienen los
bloques, permaneciendo el bloque de mayor masa siempre apoyado sobre la mesa
horizontal. Si la polea es de masa despreciable y la cuerda es inextensible y también
de masa despreciable, el coeficiente de rozamiento cinético entre el bloque de 8kg y
la mesa deberá ser:
a) 0,015.
b) 0,036.
c) 0,079.
d) 0,36.
e) 0,79.
e) ρ = 1,0x1016 kg/m3
5.
El cuerpo de un ser humano saludable se mantiene a una temperatura de unos 37ºC aún cuando la temperatura ambiente pueda
ser mucho menor. Una persona toma entre sus manos una pequeña moneda de hierro de 2cm de radio y 3mm de espesor que
inicialmente estaba a 25ºC.
a)
¿Cuánto vale la capacidad calorífica de la moneda de hierro?
b) Si dicha persona aprieta dicha moneda entre sus manos durante un tiempo suficiente como para que la misma alcance el
equilibrio térmico con el cuerpo de la persona ¿cuánta energía intercambiará en forma de calor la persona con la moneda?
¿En que sentido es que se producirá ese flujo de calor?
c)
¿Si esa misma energía calorífica se le entregara a una moneda de iguales dimensiones pero hecha de hielo a -2ºC sería
suficiente para fundirlo completamente? Justifique su respuesta.
Nombre:
C.I.:
6. Un tanque cilíndrico vertical de 4,0 m de altura está cerrado arriba por un pistón de masa despreciable y sin fricción. El tanque
contiene aire en equilibrio mecánico y térmico con la atmósfera, a 1 atm y 20ºC. Se vierte muy lentamente mercurio (densidad 13,6
x 106 kg/m3) sobre el pistón de modo que la temperatura del gas permanece constante durante todo el proceso (Ver figuras (i) y (ii)).
a) ¿Cuánto es lo máximo que bajará el pistón antes de que comience a derramar el mercurio por el borde superior del cilindro?
b) En el proceso anterior, ¿el gas absorberá o desprenderá calor? ¿Por qué? Si se vierte mercurio justo hasta el momento en que el
pistón queda en la posición hallada en (a), calcule el valor de dicho calor, si se sabe que el tanque contiene 150 moles de gas.
c) Se practica un pequeño orificio en la parte superior del tanque, en la que se encuentra el mercurio. ¿En dónde deberá practicarse
el orificio para que el alcance del chorro de mercurio sea máximo? Justifique su respuesta. (Ver figura (iii))