Download programa docente - ETSEI
Document related concepts
Transcript
PROGRAMA DOCENTE Código da materia Nome da materia Tipo materia (libre elección, optativa, obrigatoria, troncal) Alumnos novos Alumnos totais Créditos aula/grupo (A) Créditos laboratorio/grupo (L) Créditos prácticas/grupo (P) Número grupos Aula Número grupos Laboratorio Número grupos Prácticas Anual /Cuatrimestral Departamento Área de coñecemento 3041004350 Electrotecnia Xeral Op. De Orient. 81 162 15.0 3.0 0.0 2 5 0 Anual Enxeñería Eléctrica Enxeñería Eléctrica Datos do Departamento: PROFESORADO DA MATERIA Nome profesor/a Código Camilo José Carrillo González 953 M. Anxo Prieto Alonso 767 González Valle Créditos Lugar e Horario Tutorías (indicando A, L ou P) 15A; 7,5L ETSEIM Enx. Eléctrica, Despacho 142 11:00 a 14:00 Lunes y Martes (1er Cuatrimestre) 7,5A; 4,5L ETSEIM Enx. Eléctrica, Despacho 243 10:00 a 12:00 de Martes a Jueves (2º Cuatrimestre) TEMARIO TEORÍA DE CIRCUITOS (1er Cuatrimestre) TEMA I: INTRODUCCION, AXIOMAS Y ELEMENTOS DE CIRCUITOS Lección 1.- Unidades.- Referencias de polaridad.- Circuito eléctrico.- Axiomas de Kirchoff.- Problemas fundamentales en la teoría de circuitos. Lección 2.- Elementos y su clasificación.- Resistencia: Definición, representación y modelo matemático.Fuentes independientes de tensión e intensidad: Definiciones, representaciones y modelos matemáticos.Fuentes dependientes de tensión e intensidad. Lección 3.- Condensador: Definición, representación y modelo matemático.- Bobina: Definición, representación y modelo matemático. Bobinas acopladas magnéticamente: Definiciones.- Ecuaciones de flujos. Inductancias propias y mutuas. Representaciones y modelos matemáticos. Transformador ideal.Circuitos magnéticos.- Relaciones de Tensión.- Relaciones de Intensidad. Lección 4.- Potencia y energía: Conceptos y definiciones.- Potencia y energía en elementos ideales: resistencias, condensadores, bobinas, bobinas acopladas, transformadores y fuentes. Potencia y Energía en fuentes reales. Lección 5.- Asociaciones de los elementos de un circuito. Concepto de impedancia y admitancia operacional.- Asociaciones paralelo y serie de: resistencias, condensadores y bobinas.- Divisores de tensión.- Divisores de intensidad. Lección 6.- Transformación estrella y triángulo.- Conversión de fuentes reales.- Modificación geométrica de circuitos. TEMA II: METODOS DE ANALISIS DE CIRCUITOS ELECTRICOS. Lección 7.- Topología de circuitos: Definiciones y representaciones de los circuitos.- Número y elección de las ecuaciones independientes circulares y nodales. Ramas activas: ramas normalizadas y rama activa generalizada. Lección 8.- Análisis mediante ecuaciones circulares: Formas matriciales. Impedancias operacionales. Escritura directa de las ecuaciones correspondientes al análisis por mallas: circuitos sin acoplamientos y circuitos con acoplamientos. Lección 9.- Análisis mediante ecuaciones nodales: Concepto de tensión de corte y formas matriciales. Admitancias operacionales. Escritura directa de las ecuaciones correspondientes al análisis por nudos: circuitos sin acoplamientos y circuitos con acoplamientos. TEMA III: CIRCUITOS EN REGIMEN ESTACIONARIO SENOIDAL. Lección 10.- Determinación del régimen estacionario senoidal por el método simbólico.- Modelos de los elementos pasivos básicos ante variables senoidales.- Concepto de impedancias y admitancias complejas.Circuitos básicos de corriente alterna: Serie y Paralelo.- Diagramas fasoriales de tensión e intensidad.Impedancias y admitancias de entrada a los dipolos pasivos. Lección 11.- Potencia y energía en el régimen estacionario senoidal. Potencias instantánea, media y activa en los elementos básicos.- Potencia y energía en los dipolos.- Potencia aparente y reactiva.- Potencia compleja.- Diagrama fasorial de potencias.- Teorema de Boucherot.- El factor de potencia y su importancia en los sistemas eléctricos.- Corrección del factor de potencia: Casos simples.- Medida de la potencia: Vatímetros y Varímetros. Lección 12.- Técnicas generales de análisis de circuitos en régimen estacionario senoidal.- Teoremas fundamentales en régimen estacionario senoidal. TEMA IV: SISTEMAS TRIFASICOS. Lección 13.- Introducción.- Fuentes y cargas en los sistemas trifásicos.- Secuencia de fase.- Tensiones e intensidades en los sistemas trifásicos.- Teorema generalizado de Thevenin y Norton.- Conversión de fuentes ideales y reales trifásicas.- Conversión de cargas trifásicas. Lección 14.- Análisis de circuitos trifásicos equilibrados: Reducción a un circuito monofásico. Potencias y su medida. Diagramas fasoriales. Compensación del factor de potencia. Lección 15.- Análisis de circuitos trifásicos desequilibrados: Estrella. Triángulo. Diagramas fasoriales. PRÁCTICAS TEMA I: ELECTROMETRÍA E INSTRUMENTACIÓN BÁSICAS. - Aplicaciones del galvanómetro como: amperímetro, voltímetro y ohmímetro. - Características y aplicaciones del osciloscopio. PRÁCTICAS TEMA II: ELEMENTOS DE CIRCUITOS. - Determinación de las características de: generadores de tensión, condensadores, bobinas y bobinas con acoplamientos magnéticos. PRÁCTICAS TEMA III: CIRCUITOS EN RÉGIMEN ESTACIONARIO SENOIDAL. - Comportamiento de las bobinas y condensadores en CA. - Teorema de la máxima transferencia de potencia. - Medidas de las potencias activas y reactivas. - Contadores monofásicos de energía. - Compensación de energía reactiva. PRÁCTICAS TEMA IV: SISTEMAS TRIFÁSICOS. - Medidas de las potencias activas y reactivas - Contadores trifásicos de energía MÁQUINAS ELÉCTRCAS (2o Cuatrimestre) TEMA 1 - INTRODUCCIÓN A LAS MÁQUINAS ELÉCTRICAS LECCIÓN 1: Circuitos magnéticos Materiales magnéticos. Campo magnético cuasi-estacionario. Leyes fundamentales. Obtención de un campo magnético. El circuito magnético ideal con excitación constante. Circuitos magnéticos con entrehierro. Analogía entre circuito eléctrico y magnético. Circuito magnético excitado por una c.a. LECCIÓN 2: Generalidades sobre maquinas eléctricas La energía eléctrica. La máquina eléctrica. Postulados fundamentales. Balance de potencias en la máquina eléctrica. Pérdidas y rendimiento en las máquinas eléctricas. Calentamiento. Aislantes. Valores nominales de una máquina eléctrica. Regímenes de servicio. Protección de las máquinas eléctricas. Clasificación general de las máquinas eléctricas. TEMA 2 - TRANSFORMADORES LECCIÓN 1: Introducción a los transformadores Definición de transformador. Clasificación de los transformadores. Objeto y localización de los transformadores en los sistemas eléctricos. Elementos básicos de un transformador. Símbolos utilizados para representar los transformadores. LECCIÓN 2: Transformador monofásico de potencia Constitución del transformador monofásico de potencia. Principio de funcionamiento del transformador ideal. Funcionamiento de un transformador real. Circuito equivalente del transformador. Ensayos del transformador de potencia. Corriente de conexión de un transformador. Rendimiento. Variación de la tensión secundaria de un transformador. Transformadores con tomas. Trabajo en paralelo de transformadores monofásicos. LECCIÓN III: Transformadores trifásicos Bancos trifásicos. Transformadores trifásicos. Comparación entre bancos trifásicos y transformadores trifásicos. Métodos de conexión de los devanados del transformador trifásico. Transformador trifásico en régimen equilibrado. Ensayos del transformador trifásico. Circuito equivalente. Designación de polos y bornes sobre la tapa de un transformador. Indice horario. Características de las conexiones de los transformadores trifásicos. Trabajo en paralelo de transformadores trifásicos. LECCIÓN IV: Autotransformadores Constitución. Principio de funcionamiento. Ventajas e inconvenientes de los autotransformadores. Comparación entre un transformador y un autotransformador. Aplicaciones de los autotransformadores. LECCIÓN V: Transformadores de medida y proteccion Introducción. Transformadores de tensión. Transformadores de intensidad. TEMA III: MAQUINAS ELECTRICAS ROTATIVAS LECCIÓN I: Generalidades sobre máquinas eléctricas rotativas Introducción. La máquina eléctrica rotativa. Constitución general de las máquinas eléctricas rotativas. LECCIÓN II: FMM y campo magnético en el entrehierro de una máquina eléctrica F.m.m. y campo magnético en el entrehierro de una máquina eléctrica. Campo creado por un devanado concentrado de paso diametral. Campo creado por un devanado distribuido. Producción de campos giratorios mediante devanados trifásicos. Teorema de Leblanc. LECCIÓN III: F.E.M. inducida en el devanado de una máquina eléctrica F.e.m. inducida en un devanado de una máquina eléctrica. Factores que afectan a la F.e.m inducida en un devanado: factor de forma, factor de distribución, factor de paso, factor de inclinación de las ranuras. TEMA IV: MAQUINAS ASINCRONAS LECCIÓN I: Constitución y principio de funcionamiento Introducción. Constitución de las máquinas de inducción. Principio de funcionamiento. Circuito equivalente del motor de inducción. Ensayos del motor asíncrono. Balance de potencia en el motor de inducción. Rendimiento eléctrico. Par interno. Modos de funcionamiento de la máquina asíncrona. Estudio de la máquina síncrona mediante el diagrama del círculo. LECCIÓN II: Arranque y regulación de velocidad del motor de inducción El problema del arranque en los motores de inducción. Arranque de motores con rotor en jaula de ardilla. Arranque de motores con rotor bobinado. Motores de doble jaula de ardilla. Motores con jaula de ranura profunda. La regulación de velocidad. Regulación actuando sobre el número de polos. Regulación actuando sobre el deslizamiento. Regulación actuando sobre la frecuencia. LECCIÓN III: Motores de inducción monofásicos Constitución y principio de funcionamiento. Arranque del motor de inducción monofásico. Aplicaciones. TEMA V: La MAQUINA SÍNCRONA. LECCIÓN I: Constitución y principio de funcionamiento Aspectos constructivos. Tipos de generadores. Sistemas de excitación. Principio de funcionamiento como alternador. Funcionamiento en carga: reacción de inducido. Diagrama fasorial de un alternador. Análisis lineal de la máquina síncrona. Análisis no lineal de la máquina síncrona. Regulación de tensión. Funcionamiento de un alternador en una red aislada. Funcionamiento como motor. TEMA VI: LA MAQUINA DE C.C. LECCIÓN I: Constitución y principio de funcionamiento Constitución. Principio de funcionamiento. Formas de excitación. Reacción de inducido. Funcionamiento como motor: Motor con excitación serie, derivación y compuesta. LECCIÓN II: Motor monofasico de c.a. con colector de delgas. Constitución. Principio de funcionamiento. PRÁCTICAS DE LABORATORIO (2ºCuatrimestre) 1. 2. 3. 4. 5. 6. 7. 8. 9. Ensayo en vacío de un transformador monofásico Ensayo en cortocircuito de un transformador monofásico Ensayo en carga de un transformador monofásico Ensayo en carga de un transformador trifásico. Ensayo en vacío de un motor de inducción trifásico Ensayo a rotor bloqueado de un motor de inducción trifásico Ensayo de un motor de inducción en carga Característica de vacío de un alternador. Motor de continua con excitación derivación. REFERENCIAS BIBLIOGRÁFICAS: Básicas e Complementarias (si procede) BIBLIOGRAFÍA PARA CLASES DE AULA Teoría de CIrcuitos (1er Cuatrimestre) Teoría de Circuitos, V.M. Parra, J. Ortega, A. Pastor y A. Pérez-Coyto. Circuitos y Señales: Introducción a los Circuitos Lineales y de Acoplamiento, R.E. Thomas y A.J. Rosa. Basic Circuit Theory, Ch.A.Desoer y E.S.Kuh Teoría de Circuitos, E.Ras Teoría Moderna de Circuitos Eléctricos, R.Iñigo Análisis de Circuitos Eléctricos, L.S.Bobrow Circuitos Eléctricos CA/CC. Enfoque integrado, C. Hubert Applied Circuit Analysis, S. Karni Electromagnetismo y Circuitos Eléctricos, J. Fraile Mora Máquinas Eléctricas (2o Cuatrimestre) Maquinas Electricas. Jesús Fraile Mora. Serv. Publicaciones R. O. P. ETSI de C.C. y P. Madrid. Curso moderno de maquinas electricas rotativas. Tomos: I a IV. M. Cortés Cherta. Editores Tec. Asoc. Convertidores electromecánicos de energía. G. Herranz Acero. Marcombo. Transformadores. Enrique Ras Oliva. Marcombo Electrotecnia general. Maquinas electricas. Jesus Ortega Jiménez. Secc. de Pub. de la ETSII de Madrid. Maquinas eléctricas. Fitzgerald, Kingsley y Umans. Mc Graw Hill Máquinas eléctricas. Stephen J. Chapman. Mc Graw Hill BIBLIOGRAFÍA PARA PRÁCTICAS: Teoría de CIrcuitos (1er Cuatrimestre) Medidas Eléctricas, P.Breant Electronic Instrumentation and Measurements Techniques, W.D.Cooper Electrical Measurement Analysis, E.Frank Instrumentación Eléctrica y Sistemas de Medida, B.A.Gregory Fundamentos de Metrología Eléctrica, A.M.Karcz El Osciloscopio, P.E.Klein Prácticas de Laboratorio de Medidas Eléctricas, J.Palacios Técnicas de las Medidas Eléctricas, M.Stock y K.H.Winterling Basic Electrical Measurements, M.B.Stout Máquinas Eléctricas (2o Cuatrimestre) Manual de Practicas de laboratorio. MÉTODO DOCENTE: Clases de Aula (lección magistral) Clases de Problemas Prácticas de Laboratorio Tutorías SISTEMA DE VALIDACIÓN: Número de probas parciais: 2 (Común para docencia de aulas y prácticas) Tipo de Avaliacións: Avaliación da docencia de Aulas: Escrita. Avaliación da docencia de Prácticas: Escrita. Avaliación da docencia de Laboratorios: Escrita (memorias de cada práctica) Criterios de valoración: La asignatura se divide en dos cuatrimestres: Teoría de Circuitos (1 er Cuatrimestre) y Máquinas Eléctricas (2o Cuatrimestre), de los que se realizarán sendos exámenes parciales. Para superar dichos cuatrimestres es necesario aprobar su examen parcial o bien la parte correspondiente al cuatrimestre en uno de los exámenes oficiales. Superado algunos de los cuatrimestres, la nota se conserva de forma independiente al resultado obtenido en el examen del otro cuatrimestre, siempre y cuando el alumno se matricule y se presente a exámenes en años sucesivos para superar el total de la materia. La evaluación de los alumnos se llevará a cabo mediante exámenes escritos, que se aprueban con una nota de al menos 5. Criterios Adicionales para Teoría de Circuitos (1er Cuatrimestre): Es necesario obtener una calificación de al menos 2 sobre 10 en cada uno de los problemas de los que conste el examen. Es necesaria la realización de prácticas de laboratorio con sus correspondientes memorias para poder superar la asignatura. Criterios Adicionales para Máquinas Eléctricas (2º Cuatrimestre): Es necesario obtener una calificación de al menos 3.5 puntos sobre 10 en cada una de las partes (teoría y problemas) de las que conste el examen. Es necesaria la realización de prácticas de laboratorio con sus correspondientes memorias para poder superar la asignatura. En cada proba indicaranse as datas de publicación das calificacións e de revisión