Download Determinación de multiplicidades de ceros

Document related concepts

Teorema de factorización de Weierstrass wikipedia , lookup

Principio del argumento wikipedia , lookup

Teorema de Sturm wikipedia , lookup

Fórmula explícita wikipedia , lookup

Multiplicidad wikipedia , lookup

Transcript
Determinación de multiplicidades de ceros
Determinar los ceros del polinomio
y mencionar la multiplicidad de cada uno; luego trazar la gráfica
de f .
Solución
Se observa, en la forma factorizada, que f(x) tiene tres ceros
distintos, 2, 4 y − 1. El cero 2 tiene multiplicidad 1, el cero 4
multíplicidad 3, y el cero − 1, multiplicidad 2. Nótese que f(x)
tiene grado 6.
Las abscisas en el origen de la gráfica de f son los ceros reales −
1, 2 y 4. Como la multiplicidad de − 1 es entero par, la gráfica
corta, pero no cruza, el eje x en (− l, 0). Como las multiplicidades
de 2 y 4 son impares, la gráfica cruza al eje x en (2, 0) y (4, 0). La
ordenada en el origen es f(0) = 8. En la figura aparece esta
gráfica.
Si f(x) = a(x − c1)(x − c2)... (x − cn) es un polinomio de grado n,
entonces los n números complejos c1, c2, ..., cn son ceros de f(x).
Contando una raíz de multiplícidad m como m ceros, se ve que
f(x) tiene cuando menos n ceros (no necesariamente todos
distintos). Combinando esto con el hecho de que f(x) tiene cuando
más n ceros, se llega al Teorema del número exacto de ceros de
un polinomio.