Download INTRODUCCIÓN A LA ESTADÍSTICA
Document related concepts
Transcript
6º DERECHO MATEMÁTICA 2014 Prof: Paula Vilas 1 INTRODUCCIÓN A LA ESTADÍSTICA En cada trabajo estadístico se elige un conjunto en el que se hacen ciertas observaciones. A dicho conjunto se le llama POBLACIÓN y al fenómeno sobre el cual se hacen observaciones se le llama VARIABLE. No siempre es posible manejar todos los elementos del conjunto, a veces se trabaja sólo con un subconjunto, una MUESTRA. Cada observación se conoce con el nombre de DATO ESTADÍSTICO o VALOR DE LA VARIABLE. Por ejemplo si se pregunta a todos los alumnos del liceo sobre su asignatura preferida, la población sería los alumnos del liceo y la variable la asignatura. Existen distintos tipos de variables estadísticas: CUALITATIVAS (no numéricas) Ej: color de ojos, oficio, etc. VARIABLES ESTADÍSTICAS DISCRETAS (sólo puede tomar valores aislados) Ej: edad, número de hnos, etc. CUANTITATIVAS (numéricas) CONTINUAS (puede tomar todos los valores de un intervalo) Ej: estatura, peso, etc. Para facilitar el manejo y el estudio de los datos recabados, se ordenan en una tabla, llamada TABLA DE FRECUENCIAS. Frecuencia: es el número de veces que se repite cada dato estadístico. Frecuencia relativa: es el cociente entre la frecuencia y el número total de datos. Dato Frecuencia Matemática Inglés Derecho Dibujo 450 320 100 300 Total 1170 Frecuencia relativa 0,38 0,27 0,08 0,25 Para una mejor visualización de los datos se realizan gráficos estadísticos: diagramas de barras, histogramas, polígono de frecuencia, diagrama circular. Diagrama de barras Histograma Polígono de frecuencia Diagrama circular 6º DERECHO MATEMÁTICA 2014 Prof: Paula Vilas 2 Ejercicios: 1) Se pregunta en la clase de 6to Derecho el número de hermanos que tiene cada uno. Identificar la población, indicar el tipo de variable que es, ordenar los datos en una tabla de frecuencias, calcular el porcentaje y graficar en un diagrama de barras. 2) La siguiente tabla muestra el medio de transporte que utilizan los alumnos del liceo para llegar a clases. Identificar la población, indicar el tipo de variable que es, calcular el porcentaje y graficar en un diagrama circular. Medios Frecuencia Auto Bici Ómnibus A pie Moto 10 15 30 45 10 3) En una clase se ha pedido a los alumnos que midan “a ojo” la longitud de la mesa del profesor. Éstas son las respuestas (en cm): 200 205 195 180 190 205 200 210 193 187 203 205 200 197 199 200 175 215 225 200 185 177 196 195 198 205 190 192 200 200 a) ¿Qué tipo de variable estadística es? b) Realiza una tabla de frecuencias repartiendo las respuestas en los intervalos: 175,185 ; 185,195 ; 195, 205 ; 205, 215 ; 215, 225 y representa en un histograma y en un polígono de frecuencia. PARÁMETROS ESTADÍSTICOS Medidas de centralización: media, moda y mediana. MEDIA O PROMEDIO Es la suma de todos los datos dividida entre el total de éstos. x x1 x2 .... xn n Ejemplo: si un alumno ha obtenido en los escritos de matemática las siguientes notas, ¿cuál será el promedio? 5-10-6-2-8-6-4-6-7-10 Si ordenamos los datos en una tabla de frecuencia, el promedio se puede calcular de forma más rápida. x x1. f1 x2 . f 2 .... xk . f k n 6º DERECHO MODA MATEMÁTICA 2014 Prof: Paula Vilas 3 Es el dato con mayor frecuencia. Obs: la moda no tiene por qué ser única, pueden existir dos modas (bimodal), tres modas, etc. En el ejemplo anterior, MO = 6 MEDIANA Si los datos se ordenan en forma creciente (o decreciente), el valor del dato que ocupa el lugar intermedio se llama mediana. Así pues, la mediana deja tantos datos por debajo de ella como por encima. - Si el número de datos es impar, hay un único valor central y él es la mediana. - Si el número de datos es par, hay dos valores centrales y la mediana es el promedio de ambos. Ej: 3-5-5-6-6-8-10 7 datos (valor impar) Me = 6 (tres datos menores y tres datos mayores) 3-5-5-5-6-6-8-10 8 datos (valor par) Me = 56 5,5 2 En una tabla de frecuencia, conviene tener la frecuencia acumulada. 32 datos (valor par) Datos Frecuencia 1 2 3 4 5 8 7 3 4 10 Total 32 32 16 , entonces la mediana ocupará el lugar 16 y 17 2 El dato que ocupa los lugares 16 y 17 es el 3, entonces: Me= 3 Frec. acumulada 8 15 18 22 32 Ejercicios: Dadas las siguientes series de datos: a) ¿Cuál es la variable estadística en estudio y de qué tipo es? b) Realiza el gráfico correspondiente. c) Halla media, moda y mediana. 1) Notas de escritos de matemática de un grupo de 6º año: 10 – 5 – 4 – 1 – 8 – 11 – 9 6 – 6 – 1 – 10 – 5 – 8 – 7 6–5–4– 5– 6–8- 1 5 – 5 - 6 -12 – 10 – 6 – 6 2) Tiempo que emplean los alumnos de un curso en ir desde su casa al Liceo. Tiempo (en min) 0,5 5,10 10,15 15, 20 20, 25 25,30 Frecuencia 2 11 13 6 3 1 Marca de clase 6º DERECHO MATEMÁTICA 2014 Prof: Paula Vilas 4 Medidas de dispersión: rango, varianza y desviación típica. Es la diferencia entre el dato mayor y el dato menor. RECORRIDO O RANGO Ej: las siguientes son las edades de un grupo de siete personas: 10-15-46-46-18-25-30 R = 46-10 = 36 VARIANZA Es el promedio de los cuadrados de las distancias de los datos a la media. Varianza ( x1 x) 2 ( x2 x) 2 .... ( xn x) 2 n O se puede usar la siguiente fórmula que es equivalente y de mayor comodidad. Varianza 2 x12 x2 2 .... xn 2 x n DESVIACIÓN TÍPICA Es la raíz cuadrada de la varianza. var ianza Obs: la varianza tiene un grave problema; por ejemplo, si estamos tratando con una distribución de estaturas dadas en cm la media vendría en cm, pero la varianza vendría en cm2; por eso extraemos su raíz cuadrada, obteniendo la desviación típica que, en nuestro caso, sí sería en cm. Ejercicios: hallas las medidas de dispersión de la siguiente distribución de datos. 1) 2,5 – 44- 62 – 7,2 – 1 – 35,7 2) 2 4 5 5 2 3 3 2 5 2 5 2 2 3 3 2 5 3 5 5 2 5 2 5 2 3 3 6º DERECHO MATEMÁTICA 2014 Prof: Paula Vilas Ejercicios: halla los parámetros de centralización y dispersión en las siguientes tablas y grafica. 1) xi fi 1 2 3 4 5 6 7 8 9 10 5 4 2 2 1 1 2 3 4 8 2) Estaturas fi xi 150,160 160,170 170,180 180,190 8 15 3 2 Marca de clase 5 6º DERECHO MATEMÁTICA PRÁCTICO 1 MATEMÁTICA 6º DERECHO 2014 Prof: Paula Vilas Prof: Paula Vilas 6 2014 1) Indica en cada caso, cuál es la población y cuál es la variable estadística que se quiere estudiar. Especifica si es una variable cualitativa o cuantitativa, determinando en éste último caso, si es discreta o continua. a) Tiempo dedicado a las tareas domésticas por los hombres y mujeres que trabajan fuera del hogar. b) Estudios que quieren hacer las alumnas y los alumnos de un centro escolar al terminar la Educación secundaria. c) Número de aparatos de radio que hay en los hogares uruguayos. 2) Al preguntar a 40 alumnos por el número de personas que forman su hogar familiar las respuestas fueron: 5 5 4 7 4 3 5 5 3 4 6 4 6 5 6 4 6 5 5 5 5 4 7 5 6 5 5 4 3 5 3 5 6 7 4 5 4 3 5 6 a) Realiza la tabla de frecuencia y el diagrama correspondiente. b) Calcula los parámetros de centralización y de dispersión. 3) El número de aparatos de radio que hay en los hogares de un grupo de personas viene dado en esta tabla: Nº de radios 0 1 2 3 4 5 Frecuencia 3 19 18 6 3 1 a) Calcula la media y la desviación típica. b) ¿Cuál es la mediana? c) ¿Cuántos aparatos de radio y cuántas viviendas hay en esa muestra? 4) Se ha pesado a unos alumnos de una clase obteniéndose: 60 60 65 55 63 50 59 54 52 56 48 45 38 47 65 57 48 49 50 50 36 47 62 63 47 61 59 58 45 49 52 76 74 65 50 52 52 52 48 48 a) ¿Qué tipo de variable estadística es la que se estudia? b) Realiza una tabla de frecuencia agrupando los datos en los intervalos: 35,5;42,5; 42,5;49,5; 49,5;56,5; 56,5;63,5; 63,5;70,5; 70,5;77,5 c) Representa los datos en un histograma. d) Calcula x y . 5) En un control de velocidad en carretera se obtuvieron los siguientes datos: a) Calcula x y . b) ¿Qué porcentaje circula a más de 90km/h? Velocidad (km/h) 60, 70 70,80 80, 90 90,100 100,110 110,120 Frecuencia 5 15 27 38 23 17 6º DERECHO MATEMÁTICA 2014 Prof: Paula Vilas 7 6) El entrenador del equipo de baloncesto de un club deportivo duda entre seleccionar a Elena o María. Los puntos obtenidos por cada una en una semana de entrenamiento fueron: a) ¿Cuál de las dos tiene mejor media? b) Calcula la desviación típica, ¿cuál de las dos es más regular? Elena 18 23 22 24 19 25 16 María 18 26 18 28 22 17 18 7) En la familia Rodríguez, el jornal del padre es $900 y el de la madre $1500. En la familia Pérez, el padre gana por día $1860 y la madre $540. a) ¿Cuál es el jornal medio de cada familia? b) ¿En cuál de ellas es mayor la dispersión? ¿Cuál es el rango de cada familia? 8) Completa la tabla de esta distribución de la que sabemos que su media es 2,7. xi 1 2 3 4 fi 3 …. 7 5 9) Estas tres distribuciones tienen la misma media, ¿cuál es? 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 Sus desviaciones típicas son: 0,9; 1,9 y 3,9. Asocia a cada distribución uno de estos valores. 10) Se ha hecho una encuesta para saber con qué regularidad se lee el periódico en una ciudad, y los resultados fueron: Respuestas a) ¿Qué tanto por ciento de personas respondieron “nunca”? Todos los días b) Si las personas que no contestaron fueron 6, ¿cuántas Una vez a la semana personas fueron encuestadas? Una vez al mes Alguna vez al año Nunca No contesta Porcentaje 37,3 29 10,5 12 ….. 0,4