Download Electrón
Document related concepts
Transcript
Historia: modelos atómicos Desde la Antigüedad, el ser humano se ha cuestionado de qué estaba hecha la materia. Unos 400 años antes de Cristo, el filósofo griego Demócrito consideró que la materia estaba constituida por pequeñísimas partículas que no podían ser divididas en otras más pequeñas. Por ello, llamó a estas partículas átomos, que en griego quiere decir "indivisible". Demócrito atribuyó a los átomos las cualidades de ser eternos, inmutables e indivisibles. Sin embargo las ideas de Demócrito sobre la materia no fueron aceptadas por los filósofos de su época y hubieron de transcurrir cerca de 2200 años para que la idea de los átomos fuera tomada de nuevo en consideración. Año Científico Modelo atómico La imagen del átomo expuesta por Durante el s.XVIII y principios del XIX Dalton en su teoría atómica, para algunos científicos habían explicar estas leyes, es la de minúsculas investigado distintos aspectos de las partículas esféricas, indivisibles e reacciones químicas, obteniendo las 1808 inmutables, llamadasleyes clásicas de la iguales entre sí en Química. cada elemento químico. John Dalton De este descubrimiento dedujo que el Demostró que dentro de los átomos átomo debía de ser una esfera de hay unas partículas diminutas, con materia cargada positivamente, en cuyo carga eléctrica negativa, a las que se interior estaban incrustados los llamó electrones. 1897 electrones. (Modelo atómico de Thomson.) Descubrimientos experimentales J.J. Thomson 1911 Demostró que los átomos no eran macizos, como se creía, sino que están vacíos en su mayor parte y en su centro hay un diminuto núcleo. Dedujo que el átomo debía estar formado por una corteza con los electrones girando alrededor de un núcleo central cargado positivamente. (Modelo atómico de Rutherford.) Espectros atómicos discontinuos originados por la radiación emitida por los átomos excitados de los elementos en estado gaseoso. Propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos. (Modelo atómico de Bohr.) E. Rutherford 1913 Niels Bohr Una partícula subatómica es una partícula más pequeña que el átomo. Puede ser una partícula elemental o una compuesta, a su vez, por otras partículas subatómicas, como son los quarks, que componen los protones y neutrones. No obstante, existen otras partículas subatómicas, tanto compuestas como elementales, que no son parte del átomo, como es el caso de los neutrinos y bosones. La física de partículas y la física nuclear se ocupan del estudio de estas partículas, sus interacciones y de la materia que las forma y que no se agrega en los átomos. La mayoría de las partículas elementales que se han descubierto y estudiado no pueden encontrarse en condiciones normales en la Tierra, generalmente porque son inestables (se descomponen en partículas ya conocidas), o bien, son difíciles de producir de todas maneras. Estas partículas, tanto estables como inestables, se producen al azar por la acción de los rayos cósmicos al chocar con átomos de la atmósfera, y en los procesos que se dan en los aceleradores de partículas, los cuales imitan un proceso similar al primero, pero en condiciones controladas. De estas maneras, se han descubierto docenas de partículas subatómicas, y se teorizan cientos de otras más. Ejemplos de partícula teórica es elgravitón; sin embargo, ésta y muchas otras no han sido observadas en aceleradores de partículas modernos, ni en condiciones naturales en la atmósfera (por la acción de rayos cósmicos). Como partículas subatómicas, se clasifican también las partículas virtuales, que son partículas que representan un paso intermedio en la desintegración de una partícula inestable, y por tanto, duran muy poco tiempo. Protón Se encuentra en el núcleo. Su masa es de 1,6×10-27 kg.1 Tiene carga positiva igual en magnitud a la carga del electrón. El número atómico de un elemento indica el número de protones que tiene en el núcleo. Por ejemplo el núcleo del átomo de hidrógeno contiene un único protón, por lo que su número atómico (Z) es 1. Electrón Se encuentra en la corteza. Su masa aproximadamente es de 9,1×10-31 kg. Tiene carga eléctrica negativa (1.602×10-19 C).2 Neutrón Se encuentra en el núcleo. Su masa es casi igual que la del protón. No posee carga eléctrica. El concepto de partícula elemental es hoy algo más oscuro debido a la existencia de cuasipartículas que si bien no pueden ser detectadas por un detector constituyen estados cuánticos cuya descripción fenomenológica es muy similar a la de una partícula real. El estudio de estas partículas subatómicas, de su estructura y de sus interacciones, incluye materias como la mecánica cuántica y la física de partículas. A veces, debido a que gran parte de las partículas que pueden tratarse como partículas subatómicas solo existen durante períodos de tiempo muy cortos y en condiciones muy extremas como los rayos cósmicos o losaceleradores de partículas, suele llamarse a esta disciplina física de altas energías. Por su parte el tratamiento que la teoría cuántica de campos (TCC) hace de las partículas difiere de la mecánica cuántica en un punto importante. En TCC las partículas no son entidades básicas, sino que sólo existen campos y posibles estados del espacio-tiempo (el que sean perceptibles un cierto número de partículas es una propiedad del estado cuántico del espacio tiempo). Así un campo es tratado como un observable asociado a una región del espacio-tiempo, a su vez, a partir del observable de campo se puede definir un operador número que se interpreta como el número de partículas observables en el estado cuántico. Puesto que los autovalores del operador número son números enteros y las magnitudes extensivas son expresables en términos de este operador, razón por la cual los autovalores de ese operador se pueden interpretar como el número de partículas. onfiguración electrónica Como sabes en la corteza atómica se encuentran los electrones moviéndose alrededor del núcleo atómico. Los electrones se encuentran en la corteza en diferentes capas o niveles. En cada capa o nivel se puede situar un número máximo de electrones que viene dado por la expresión: nº electrones = 2·n2, donde n es el número de orden de la capa o nivel. A su vez, los electrones se encuentran en cada nivel distribuidos en diferentes subniveles denominados con las letras s, p d, f, etc. El número de electrones que cabe en cada subnivel es el siguiente: Subnivel s p d f Número de electrones que puede haber como máximo 2 6 10 14 El tipo de subnivel que puede tener un nivel dado depende del número de electrones máximo del mismo: 1 Número máximo de electrones que se pueden poner (2·n2) 2·12 = 2·1 = 2 2 2·22=2·4=8 Nivel (n) Subniveles que tiene s s p s 3 2·32=2·9=18 4 2·42=2·16=32 p d s p d f Para tener una idea muy aproximada de la distribución de los electrones en los diferentes niveles y subniveles se utiliza el diagrama de Möller. Este diagrama indica el orden de llenado de los subniveles y niveles de energía de un átomo, de arriba hacia abajo, siguiendo el sentido de las flechas, hasta llegar al número de electrones que tiene dicho átomo. Ejemplo. Escribe la estructura electrónica (distribución de electrones en la corteza) del elemento Ho (Z = 67). El número de protones coincide con el número atómico, es decir tendrá 67 protones. En el átomo neutro habrá tantos protones como electrones: nº e- = 67. Dibujando el diagrama de Möller, se van cubriendo los huecos hasta alcanzar el número de 67 electrones. La configuración electrónica es: 1 s2 2 s2 p6 3 s2 p6 d10 4 s2 p6 d10 5 s2 p6 6 s2 4 f11 El subnivel que se está llenando se debe poner al final, en nuestro ejemplo 4 f11. En química resulta de importancia los electrones más lejanos al núcleo: - Electrones de los subniveles ‘s’ y / o ‘p’ del último subnivel. - Electrones de los subniveles ‘d’ o ‘f’ que estén incompletos. En nuestro ejemplo los electrones que resultan de interés en química serían 6 s2 4 f11 al ser lo que están más lejos del núcleo, resultando más fácil que intervengan en las reacciones químicas habituales. El resto de los electrones se encuentran en niveles / subniveles más unidos al núcleo, resultando más difícil extraerlos / moverlos a otros nivel en las reacciones químicas habituales. Para aclarar más la forma de utilizar el diagrama: acceso a la simulación Números cuánticos Como hemos dicho anteriormente, los electrones sólo pueden estar en determinadas órbitas alrededor del núcleo atómico, el resto de las posiciones está restringido al electrón. Cada una de dichas restricciones viene dada por un concepto que denominamos número cuántico. En tercero de la ESO sólo vemos dos restricciones de las cuatro que hay: - La distancia al núcleo nos da el nivel de energía en el que se encuentra el electrón (lo que hemos denominado n), se denomina número cuántico principal. La forma de la órbita es otro tipo de restricción (lo que hemos denominado subnivel de energía que viene dado por las letras, s, p, d, f,…), se denomina número cuántico secundario. ISOTOPOS Y SUS APLICACIONES Isótopo | Aplicación | cobalto-60 | Para el tratamiento del cáncer porque emite una radiación con más energía que la que emite el radio y es más barato que este. | arsénico-73 | se usa como trazador para estimar la cantidad de arsénico absorbido por el organismo y el arsénico-74 en la localización de tumores cerebrales. | Bromo-82 | Útil para hacer estudios en hidrología, tales como: determinación de caudales de agua, direcciones de flujo de agua y tiempos de residencia en aguas superficiales y subterráneas; determinación de la dinámica de lagos y fugas en embalses. | Oro 198 | De gran aplicación en la industria del petróleo: perforación de pozos para búsqueda de petróleo, estudios de recuperación secundaria de petróleo, que se adelantan en la determinación de producción incremental e industria petroquímica en general. | Fósforo 32 | es un isótopo que emite rayos beta y se usa para diagnosticar y tratar enfermedades relacionadas con los huesos y con la médula ósea. | Escandio 46 | aplicable en estudios de sedimentología y análisis de suelos. | Lantano 140 | usado en el estudio del comportamiento de calderas y hornos utilizados en el sector industrial. | Mercurio 147 | de aplicación en celdas electrolíticas. | nitrógeno-15 | se emplea a menudo en investigación médica y en agricultura. También se emplea habitualmente en espectroscopia de resonancia magnética nuclear (NMR) | yodo 131 | Es uno de los radionucleidos involucrados en las pruebas nucleares atmosféricas, que comenzaron en 1945. Aumenta el riesgo de cáncer y posiblemente otras enfermedades del tiroides y aquellas causadas por deficiencias hormonales tiroideas.