Download tema 13 – estadística unidimensional
Document related concepts
no text concepts found
Transcript
Colegio “La Inmaculada” Misioneras Seculares de Jesús Obrero Nueva del Carmen, 35. – 47011 Valladolid. Tel: 983 29 63 91 Fax: 983 21 89 96 e-mail: lainmaculadava@planalfa.es Área de Matemáticas Académicas 3º de ESO Apuntes de Área TEMA 13 – ESTADÍSTICA UNIDIMENSIONAL Objetivos / Criterios de evaluación O.15.1 Conocer el significado y saber calcular los parámetros de centralización y dispersión O.15.2 Interpretar y utilizar los parámetros de dispersión. 1 Términos estadísticos (Página 272) Def.: Población: Es el conjunto de todos los elementos o individuos sobre los que se va a realizar un estudio estadístico. Por ejemplo, si se quiere estudiar un comportamiento en la adolescencia española, la población serían todas las personas adolescentes que viven en España. Def.: Muestra: Es la parte de la población sobre la que se realiza el estudio. Para que el estudio tenga valor estadístico, la muestra debe ser representativa de la población a la que sustituye. En el caso del estudio sobre la adolescencia española, la muestra serían las personas a quienes en concreto se va a preguntar, por ejemplo, 200 estudiantes de Madrid y Málaga en edad adolescente Def.: Carácter estadístico: Es cualquier cualidad o característica que va a ser analizada en un estudio estadístico, por ejemplo, la talla de calzado, la opción política preferida. Puede ser – Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado. – Cualitativa: si no se puede medir con números, por ejemplo la opción política preferida. Def.:Variable estadística: es el conjunto de valores que puede tomar un carácter estadístico. Cada valor se denomina modalidad. Las variables pueden ser: – Discretas: pueden tomar valores aislados, por ejemplo el número de hijos e hijas de las familias, pueden ser 0, 1, 2, 3 … pero no puede ser 2,4, por que no hay personas decimales. – Continuas: pueden tomar cualquier valor, por ejemplo la altura de una persona, que sí que puede ser decimal. 2. Frecuencias (página 274) Def.: Frecuencia Absoluta: de un valor o modalidad es la cantidad de veces que se repite. Se representa con fi. P.e. cuántas personas tienes 42 años. Def.: Frecuencia Relativa: Es el cociente entre la frecuencia Absoluta y el número total de datos (El tanto por uno de cada frecuencia absoluta). Se representa con hi Tema 13 – Estadística unidimensional Colegio “La Inmaculada” Misioneras Seculares de Jesús Obrero Nueva del Carmen, 35. – 47011 Valladolid. Tel: 983 29 63 91 Fax: 983 21 89 96 e-mail: lainmaculadava@planalfa.es Área de Matemáticas Académicas 3º de ESO Apuntes de Área Def.: Frecuencia Absoluta Acumulada: de un valor o modalidad es la suma de las frecuencias absolutas de todos los valores hasta llegar a él, es decir, valores o iguales a él. Se representa como Fi. P.e. cuántas personas tienen o 42 años o menos. Def.: Frecuencia Relativa Acumulada: Es el cociente entre la frecuencia Absoluta Acumulada y el número total de datos (El tanto por uno de cada frecuencia absoluta acumulada). Se representa con Hi 3 Gráficos estadísticos (página 276) Para representar los datos estadísticos se utilizan gráficas. Estas pueden ser de varios tipos: Diagramas de barras o histograma: Sobre cada valor estadístico se dispone una barra cuya altura corresponde con la frecuencia absoluta de ese valor. Polígonos de frecuencias: Es la línea que une la parte superior de cada barra de un diagrama de barras. Diagramas de sectores: Sobre un círculo que representa la totalidad de los datos, sectores coloreados muestran las frecuencias relativas de cada valor Diagramas lineales: Son similares a los polígonos de frecuencia sin que sea necesario que aparezca la barra que representa el valor. Para presentar los datos estadísticos se utilizan las tablas de frecuencias. Tema 13 – Estadística unidimensional Colegio “La Inmaculada” Misioneras Seculares de Jesús Obrero Nueva del Carmen, 35. – 47011 Valladolid. Tel: 983 29 63 91 Fax: 983 21 89 96 e-mail: lainmaculadava@planalfa.es Área de Matemáticas Académicas 3º de ESO Apuntes de Área Si las variables son continuas, o son discretas pero tienen muchos valores posibles, los datos se agrupan en “clases” o intervalos. El valor medio de cada Clase se llama marca de clase y se utiliza como valor representativo en lugar de los valores reales de la variable. Por ejemplo, para estudiar la talla de una serie de personas pueden agruparse quienes miden entre 160 y 164 cm como si midieran todas lo mismo, en este caso la marca de clase podría ser 162 cm (que es la media entre 160 y 164) y estaríamos suponiendo que todas las personas entre 160 y 164 cm miden 162 cm. En una tabla de frecuencias se disponen en columnas: Intervalo de la clase Marca de clase (xi) Frecuencia absoluta (fi) Frecuencia absoluta acumulada (Fi) Frecuencia relativa (hi) Frecuencia relativa acumulada (Hi) 4 Parámetros de centralización (Página 280) Def.: Parámetros de centralización: Son valores que resumen la muestra estadística. Suelen situarse en la parte central de la misma y pueden ser insuficientes e incluso tendenciosos debido a la poca información que aportan. Def.: Media aritmética: de una variable estadística es el cociente entre la suma de todos los valores de la misma y el número de datos existentes. Suele calcularse dividiendo el sumatorio de los productos de cada valor por su frecuencia absoluta entre la suma de todas las frecuencias absolutas. Se indica con una barra horizontal sobre el nombre de la variable. x ̄ = ∑ xi × f i ∑ fi Def.: Moda (Mo): Es el valor que más se repite en una muestra estadística. Si la distribución está agrupada en clases se habla de clase modal. Si existen dos valores que se repiten el mismo número de veces se dice que la distribución es bimodal. Def.: Mediana (M): de una variable estadística es el valor que se encuentra situado en el medio de la distribución, es decir, que el número de valores menores que él es el mismo que el número de valores mayores que él. Def.: Cuartiles (Q1, Q2 y Q3): de una variable estadística son los valores tales que el número de datos menores que ellos son, respectivamente, el 25, 50 y 75% de la muestra, y el número de valores mayores que ellos son, respectivamente, el 75, 50 y 25 % de la muestra. El segundo cuartil (Q2) coincide con la mediana. Def.: Percentil: de una variables estadística es el valor tal que el número de datos menor que él es el tanto por ciento del percentil. Son muy utilizados en pediatría. Tema 13 – Estadística unidimensional Colegio “La Inmaculada” Misioneras Seculares de Jesús Obrero Nueva del Carmen, 35. – 47011 Valladolid. Tel: 983 29 63 91 Fax: 983 21 89 96 e-mail: lainmaculadava@planalfa.es Área de Matemáticas Académicas 3º de ESO Apuntes de Área 5. Parámetros de dispersión (página 282) Def.: Parámetros de dispersión: Son valores que resumen lo agrupados o dispersos de que están los valores de una muestra estadística. Su utilización, junto con los valores de centralización, mejora sustancialmente la interpretación estadística. Def.: Rango o recorrido: de una variable estadística es la diferencia entre el valor mayor y el menor. Def.: Varianza (s2): de una variable estadística es la media de los cuadrados de las desviaciones de cada valor con respecto de la media. s 2 2 ̄ 2 ∑ f i× x i ∑ f i× (xi − x) = = − x̄ 2 ∑ fi ∑ fi Def. Desviación Típica (s): de una variable estadística es la raíz cuadrada de la varianza. 6. Interpretación conjunta de la media y la desviación típica (página 284) En las distribuciones de datos estadísticos normales, suele ocurrir que: Entre el 65 y el 70 % de los datos se encuentran alejados de la media menos de una desviación estándar (es decir, están en el intervalo una s arriba y una s abajo de la media) Entre el 90 y el 98 % de los datos se encuentran alejados de la media menos de dos desviaciones estándar. La práctica totalidad de los datos se encuentran alejados de la media menos de tres desviaciones estándar. Def.: Coeficiente de Variación (CV): de una variable estadística es el cociente entre la desviación típica y la media aritmética. CV= S ̄ X Def.: Datos atípicos: son aquellos que se encuentran muy alejados de la media. Si esto ocurre, se les suele eliminar para calcular la media sin ellos. A esta nueva media se la llama media truncada. Def.: Falacia: es la utilización sesgada de los datos estadísticos para dar ideas equivocadas y que no tienen justificación estadística cierta. Nuestro interés es aprender a reconocerlas y desenmascararlas. Tema 13 – Estadística unidimensional