Download Presentación de PowerPoint
Document related concepts
Transcript
TEMA 7 COMPONENTES DE LOS INSTRUMENTOS ESPECTROSCÓPICOS 7.1 Introducción 7.2 Instrumentación 7.1. INTRODUCCIÓN Fuente estable de energía radiante. Selector de longitudes de onda que permite el aislamiento de una región reducida de . Uno o más recipientes con la muestra. Detector de la radiación o transductor: convierte la energía radiante en una señal medible. Procesador y lector de la señal. COMPONENTES BASICOS DE UN ESPECTROMETRO Vis-UV a) 1 b) 2 1 FUENTE DE RADIACIÓN o LÁMPARA 2 SISTEMA ÓPTICO a) Sistema para dirigir la radiación 3 b) Sistema de aislamiento de la longitud de onda 3 RECIPIENTE PARA LA MUESTRA (GENERALMENTE LÍQUIDA) 4 SISTEMA DE DETECCIÓN (TRANSDUCTOR DE LA RADIACIÓN) 4 7.1. INTRODUCCIÓN Espectroscopia de emisión Espectroscopia de absorción Espec. de fluorescencia Componentes de varios tipos de instrumentos de espectroscopía óptica: (a) espectroscopía de emisión; (b) espectroscopía de absorción; (c) espectroscopía de fluorescencia y de dispersión. 7.2. INSTRUMENTACIÓN FUENTES ESPECTROSCÓPICAS Deben proporcionar una RADIACIÓN que sea tanto intensa como estable en la región deseada del espectro electromagnético. Facilitar la detección y medida del analito. Se clasifican en: Continuas Son aquellas que emiten radiaciones de todas las dentro de una región espectral. Van a emitir radiaciones cuya intensidad varía sólo de forma gradual en función de la . Lámpara de H2 y D2 Lámpara de filamento de Wolframio o Tungsteno Lámpara de Xenón Línea Es aquella que sólo emite radiaciones de determinadas Lámpara de Cátodo Hueco Lámpara de vapor de Hg Láser 7.2. INSTRUMENTACIÓN TRANSMITANCIA DE MATERIALES Intervalos de onda que son transparentes los distintos materiales que utilizan para fabricar ventanas, lentes, recipientes de muestra y prismas de instrumentes espectroscópicos. 7.2. INSTRUMENTACIÓN SELECTORES DE LONGITUDES DE ONDA Proporcionan una radiación constituida por un grupo limitado y continuo de estrecho denominado BANDA. Ningún selector es capaz de proporcionar una única o frecuencia (radiación monocromática), sino una distribución de . Ancho de banda efectivo: anchura de banda de radiación que pasa a través de un selector de longitud de onda, medida a la mitad de la altura de la banda. 7.2. INSTRUMENTACIÓN SELECTORES DE LONGITUDES DE ONDA Tipos de selectores de longitudes de onda: Filtros Monocromadores FILTROS Se define como un selector de longitud de onda que emplea absorción o interferencia constructiva o destructiva para controlar el rango de longitudes de onda seleccionadas. Los filtros trabajan absorbiendo todas las radiaciones excepto una banda estrecha de radiación procedente de una fuente continua. 7.2. INSTRUMENTACIÓN SELECTORES DE LONGITUDES DE ONDA Tipos de filtros Filtros de interferencia Filtros de absorción 7.2. INSTRUMENTACIÓN SELECTORES DE LONGITUDES DE ONDA MONOCROMADORES Permiten variar de forma continua y en un amplio intervalo la de radiación, esto es, hacer un barrido de un espectro (barrido espectral) y permiten aislar cualquier porción deseada del espectro. Componentes de un monocromador: Una rendija de entrada Una lente o espejo colimador para producir un haz paralelo Un prisma o red de reflexión, para dispersar la radiación en las que la componen Un elemento de enfoque Ventanas de entrada y salida 7.2. INSTRUMENTACIÓN SELECTORES DE LONGITUDES DE ONDA MONOCROMADORES LUZ COLOR Sistemas DISPERSIVOS: MONOCROMADORES •En Dispersión lineal o angular de los monocromadores una red la luz se dispersa linealmente,lo que significa que la separación de las distintas s a lo largo del plano focal varía linealmente con la longitud de onda. (Ver (a)) •Un prisma dispersa la luz angularmente, lo que significa que la separación de las distintas s a lo largo del plano focal no es lineal. Es decir, las s más cortas se dispersan en mayor medida que las s más largas. (ver b). Además, existe una dependencia de la con el índice de refracción del material del prisma. ABSORCIÓN 7.2. INSTRUMENTACIÓN RECIPIENTES PARA LAS MUESTRAS Las celdas o cubetas deben fabricarse de un material que permita el paso de la radiación de la región espectral de interés. UV (<350 nm): cuarzo o sílice fundida (Vis e IR) 350 a 2000 nm: vidrio de silicato Vis: plástico IR: NaCl cristalino 7.2. INSTRUMENTACIÓN DETECTORES DETECTOR: Dispositivo que indica la existencia de un algún fenómeno físico. TRANSDUCTOR: Tipo especial de detector que convierte distintas magnitudes físicas o químicas (luz, pH, temperatura,...) en señales eléctricas (voltaje, carga o corriente). 7.2. INSTRUMENTACIÓN DETECTORES PROPIEDADES DE LOS TRANSDUCTORES Debe responder rápidamente a bajos niveles de energía radiante en un amplio intervalo de . Debe producir una señal eléctrica que se amplifique fácilmente y que tenga un nivel de ruido relativamente bajo. Debe presentar una mínima señal de salida en ausencia de radiación. Es esencial que la señal eléctrica producida por el transductor G sea directamente proporcional a la potencia del haz (P). G=K·P 7.2. INSTRUMENTACIÓN DETECTORES Detector ideal Debe tener sensibilidad elevada.. Debe tener respuesta lineal para la energía radiante y un tiempo de respuesta pequeño. Debe ser utilizable en un rango amplio de longitudes de onda. Elevada relación señal/ruido. Mínima señal en ausencia de radiación. Buena disponibilidad para la amplificación de señal. 7.2. INSTRUMENTACIÓN DETECTORES TIPOS DE TRANSDUCTORES Detectores de fotones (fotoeléctricos o cuánticos): - Fototubos - Tubos fotomultiplicadores (respuesta rápida y elevada sensibilidad) - Detectores de foto conductividad - Fotodiodos de silicio - Celdas fotovoltaicas (sencillos, baratos y buenos para radiación vísible Detectores que responden a calor (caloríficos o térmicos) SON UTILIZADOS EN LA ZONA DEL INFRARROJO 7.2. INSTRUMENTACIÓN PROCESADORES Y MEDIDORES DE SEÑAL PROCESADOR: Es un dispositivo electrónico que amplifica la señal eléctrica de salida de un detector. En la actualidad las señales obtenidas son recogidas y almacenadas en un ordenador que nos permite realizar tratamientos matemáticos de la señal. •Doble haz •Diodo array DETECTORES DE FOTONES Actualmente , la forma más utilizada de transducción de la energía radiante en Espectrofotometría VIS-UV es mediante un detector de fotones LOS DETECTORES DE FOTONES SON DISPOSITIVOS QUE TRANSFORMAN LA ENERGIA RADIANTE EN UNA SEÑAL ELÉCTRICA Entre estos detectores están: 1.- Célula Fotovoltaica 2.- Fototubo 3.- Tubo Fotomultiplicador 4.- Fotodiodos DETECTORES DE FOTONES 1.- Célula Fotovoltaica: La energía radiante genera una corriente en la interfase entre un semiconductor (ej. Se, Hg-Cd-Te) y un metal (Fe o Cu). Al incidir la radiación, el semiconductor se vuelve conductor. Se rompen los enlaces y se liberan electrones y huecos positivos. Los electrones migran hacia la película metálica y pasan al circuito externo para recombinarse con los huecos que migran hacia el metal base. Se crea una corriente cuya magnitud es proporcional al número de fotones que inciden. • Se utilizan en el VIS RADIACIÓN (350-700 nm) ELECTROMAGNÉTICA Ag SEMITRANSPARENTE SEMICONDUCTOR •No usan fuente externa de Energía Ag METAL BASE + + e- e- e- + + Metal Base Las células fotovoltaicas de Si se denominan Células solares y se utilizan como fuentes de potencia o baterías solares. DETECTORES DE FOTONES 2.- Fototubo: La radiación causa una emisión de electrones de una superficie sólida fotosensible.Basado en el efecto fotoelectrico. ee- Anodo Catodo e- El material fotosensible del cátodo(ej.óxidos de metales alcalinos) emite electrones al ser irradiado. Debido al voltaje aplicado entre los electrodos, los electrones se dirigen al ánodo, por el circuito fluye una corriente cuya intensidad es directamente proporcional a la intensidad de la radiación que la provoca. • Se utilizan en el UVVIS (190-700 nm) Está constituido por un cátodo semicilíndrico y un ánodo de filamento en una ampolla de cuarzo o vidrio donde se ha hecho el vacío.Entre los electrodos se aplica un voltaje •Es más sensible que la célula fotovoltaica. DETECTORES DE FOTONES 3.- Tubo fotomultiplicador: Al ser iluminado el cátodo fotosensible se emite electrones que son acelerados por el campo eléctrico e inciden sobre varias superficies liberando una cascada de electrones secundarios, 106107 electrones por cada fotón incidente. •Son muy sensibles a la hn radiación VIS y UV. Fotocátodo Ventana de cuarzo Dínodo 1 Dínodo 2 Dínodo 3 Ánodo •Tienen tiempos de respuesta muy rápidos. •Solo pueden medir radiación de baja potencia. •Su sensibilidad viene limitada por la corriente oscura debida a la amplificación. Constituido por un cátodo fotosensible (similar al fototubo) y un ánodo colector separados por una serie de electrodos positivos de MgO, GaP (entre 5-11), llamados dínodos (cada uno a un voltaje 90 V superior al anterior) que emiten de 2 a 5 electrones cuando son golpeados con electrones de suficiente energía. DETECTORES DE FOTONES 4.- Fotodiodos de silicio: La absorción de la radiación electromagnética aumentan la conductividad a través de una unión pn de polarización inversa. – electrones + huecos Unión pn de polarización inversa •Sensibles entre 190-1100 nm. •Se pueden miniaturizar y utilizar en series lineales de fotodiodos (p.e. 1024 diodos). La polarización inversa crea una capa de depleción que reduce casi a cero la conductividad del dispositivo. Sin embargo, cuando sobre esta zona de depleción incide la radiación, se forman en ella agujeros y electrones libres que dan lugar a un aumento de la conductividad y se crea una corriente eléctrica que es proporcional a la potencia radiante.