Download Presentación de PowerPoint - McGraw Hill Higher Education
Document related concepts
Transcript
SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética FIGURA 8–1 Formación de un estado de transición intermedio durante una reacción química simple, A + B → P + Q. Se muestran tres etapas de una reacción química en la cual un grupo fosforilo es transferido desde un grupo L que sale hacia un grupo E que entra. Arriba: el grupo E que entra (A) se acerca al otro reactivo, L-fosfato (B). Note cómo los tres átomos de oxígeno enlazados por las líneas triangulares, y el átomo de fósforo del grupo fosforilo forman una pirámide. centro: conforme E se acerca al l-fosfato, el nuevo enlace entre E y el grupo fosfato empieza a formarse (línea punteada) a medida que el que enlaza L al grupo fosfato se debilita. Estos enlaces parcialmente formados están indicados por líneas punteadas. abajo: la formación del nuevo producto, E-fosfato (p), ahora está completa a medida que el grupo l (Q) que sale, egresa. advierta cómo las características geométricas del grupo fosforilo difieren entre el estado de transición y el sustrato o producto. Note la manera en que el fósforo y los tres átomos de oxígeno que ocupan los cuatro ángulos de una pirámide en el sustrato y el producto se hacen coplanares, como se recalca por el triángulo, en el estado de transición. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–2 La barrera de energía para reacciones químicas. (Véase la exposición en el texto.) Todos los derechos reservados. McGraw-Hill Education LLC SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética FIGURA 8–3 Efecto del pH sobre la actividad de enzima. considere, por ejemplo, una enzima con carga negativa (E–) que se une a un sustrato que tiene carga positiva (SH+). Se muestra la proporción (%) de SH+ [\\\] y de E– [///] como una función del pH. Sólo en el área cuadriculada tanto la enzima como el sustrato portan una carga apropiada. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–4 Efecto de la concentración de sustrato sobre la velocidad inicial de una reacción catalizada por enzima. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–5 Representación de una enzima en la presencia de una concentración de sustrato que está por debajo de Km (A), a una concentración igual a Km (B), y a una concentración bastante por arriba de Km (c). Los puntos A, B y C corresponden a esos puntos en la figura 8-4. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–6 Gráfico del doble recíproco o de lineweaver-burk de 1/vi en contraposición con 1/[S] usado para evaluar la Km y Vmáx. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–7 Representación de cinética de saturación de sustrato sigmoidea. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–8 Representación gráfica de una forma lineal de la ecuación de Hill usada para evaluar S50, la concentración de sustrato que produce la mitad de la velocidad máxima, y el grado de cooperación n. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–9 Reacción de succinato deshidrogenasa. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–10 Gráfico de lineweaver-burk de inhibición competitiva simple. Note la completa distensión de inhibición a [S] alta (esto es, 1/[S] baja). SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–11 Gráfico de lineweaver-burk para inhibición no competitiva simple. Todos los derechos reservados. McGraw-Hill Education LLC SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética FIGURA 8–12 Aplicaciones de los gráficos de Dixon. arriba: inhibición competitiva, estimación de Ki. abajo: inhibición no competitiva, estimación de Ki. Todos los derechos reservados. McGraw-Hill Education LLC SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética FIGURA 8–13 Representaciones de tres clases de mecanismos de reacción Bi-Bi. Las líneas horizontales representan la enzima. las flechas indican la adición de sustratos y la salida de productos. Arriba: una reacción Bi-Bi ordenada, característica de muchas oxidorreductasas dependientes de NaD(p)H. centro: una reacción Bi-Bi al azar, característica de muchas cinasas y algunas deshidrogenasas. abajo: una reacción de ping-pong, característica de aminotransferasas y serina proteasas. SECCIÓN I. Estructuras y funciones de proteínas y enzimas CAPÍTULO 8. Enzimas: cinética Todos los derechos reservados. McGraw-Hill Education LLC FIGURA 8–14 Gráfico de lineweaver-burk para una reacción de pingpong de dos sustratos. Un aumento de la concentración de un sustrato (S1) mientras que de la del otro sustrato (S2) se mantiene constante, cambia las intersecciones x y y, no así la pendiente.