Download "un número" 3 -in -lea enteros
Transcript
Continuidad Definición de Continuidad Teorema de los valores intermedios Reglas para funciones continuas Algunas Funciones Continuas Ejemplos Definición de Continuidad El camino más sencillo para definir una función continua es decir que una función es continua si se puede dibujar sin levantar el lápiz del papel. Función Continua Función Discontinua Una característica de las funciones continua es que tienen límite y que el valor del límite es el valor de la función. Esta es la “verdadera” definición de continuidad. Funciones/Continuidad. Funciones Continuas lim f x Definición Una función f es continua en x = x0 si el límite x x0 existe y se verifica lim f x f x . 0 x x0 Una función f es continua por la izquierda en x = x0 si existe y se verifica lim f x f x . 0 x x0 Una función f es continua por la derecha en x = x0 existe y se verifica lim f x f x . 0 x x0 si lim f x x x0 lim f x x x0 Una función f es continua en un intervalo abierto si es continua en cada punto del intervalo. Una función f es continua en un intervalo cerrado [a,b] si es continua en el intervalo abierto (a,b), es continua por la izquierda en b y continua por la derecha en a. Una función que no es continua (en un punto o en un intervalo del dominio de definición de la función) se dice que es discontinua. Funciones/Continuidad. Teorema de los Valores Intermedios Si f es continua en un intervalo entonces toma cualquier valor entre dos valores que tome la función. Ésta es la propiedad más importante de las funciones continuas, que se conoce como el teorema de los valores intermedios y que discutiremos posteriormente . f g a c d b La función f es continua, f(a) < 0 y f(b) > 0. Entonces la ecuación f(x) = 0 tiene solución entre a y b. La función g no es continua siempre. La ecuación g(x) = 0 no tiene soluciones aunque g toma valores positivos y negativos. Funciones/Continuidad. Ejemplos de Funciones Continuas 1 2 3 f(x) = x3 – x es continua siempre. Es continua si x ≠ 0, y discontinua en el punto x = 0. h(x) = sen(x)/x está definida y es continua para x ≠ 0. Definiendo h(0) = 1 se extiende la función h a una función continua en todo punto x. Funciones/Continuidad. Reglas de Funciones Continuas Supongamos que las funciones f y g son continuas en x = x0. Sea c Teorema Las siguientes funciones son continuas en x = x0. 1 f(x) + g(x) 2 cf(x) 3 f(x) g(x) 4 f(x)/g(x) suponiendo que g(x0) ≠ 0 Demostración El resultado es consecuencia inmediata de las propiedades de los límites Usaremos, sin demostrar el siguiente resultado Teorema Si f es continua en x = a, y g es continua en f(a), entonces la función compuesta g ◦ f es continua en x = a. Funciones/Continuidad. Algunas Funciones Continuas Como la función f(x) = x es continua, las reglas de las Funciones Continuas implican que: 1. Los polinomios son funciones continuas. 2. Las funciones racionales, es decir los cocientes R = P/Q de dos polinomios P y Q son continuas en los puntos x0 para los cuales Q(x0) ≠ 0. Se puede demostrar además que: 1. Las funciones xr, r , son continuas donde están definidas. 2. Las funciones f(x) = ax, a > 0, son continuas. En particular la Función Exponencial ex es continua. 3. Las funciones trigonométricas son continuas donde están definidas. 4. Las funciones trigonométricas inversas son continuas donde están definidas. 5. El logaritmo es continua donde está definida. Funciones/Continuidad. Ejemplos 1 ¿Donde es continua la función tan x ? Solución Por las observaciones anteriores, tan x es continua donde esté definida. La función tan x = sen(x)/cos(x) está definida en los puntos x para los que cos x ≠ 0. Concluimos que la función tan x es continua para los puntos x ≠ π/2 + nπ, siendo n un número entero . Observemos que para los puntos x = π/2 + nπ, la función tan x no está definida. Funciones/Continuidad. Ejemplos 2 ¿En que puntos es continua la función f(x) = x + –x ? Nota: x = mayor entero ≤ x. Solución Observemos que si n – 1 < x < n para algún entero n, entonces x = n – 1 y –x =−n. Por tanto , si x no es un número entero se tiene que f(x) = −1. El límite de la función f es −1 siempre. Por otro lado, si x es un número entero, entonces x = x, y –x = −x. Por tanto , si x no un número entero se tiene que f(x) = 0. Entonces f es continua en los puntos que no sean números enteros y discontinua en los números enteros. Funciones/Continuidad. Ejemplos 3 ¿Donde es continua la función ? Solución Observemos que el numerador está definido y es continuo para x > 0. El denominador ln x – 1 también está definido para todo x, x > 0. El denominador se hace 0 si x = e. En este punto la función no está definida y por supuesto no es continua. Respuesta e Gráfica de la función g. La recta vertical de color azul x = e es una asíntota de g. La función g es continua en los puntos x tal que x > 0, x ≠ e. Funciones/Continuidad. Ejemplos 4 Estudiar la continuidad de la función Solución 1 Como x2 y la función Seno son ambas continuas, la función compuesta sen( x2 ) es continua. 2 Como 1 + sen(x2) ≥ 0 para todo x, definida y es continua para todo x. 3 está El numerador está definido y es continua para todo x. El denominador x2 es una función continua, y toma el valor 0 para x = 0. Respuesta La función f está definida y es continua para x ≠ 0. Funciones/Continuidad. Ejemplos La función 5 está definida si x ≠ 0. ¿ Es posible definir f(0) para que la función f sea continua en x = 0? Solución Necesitamos hallar el límite de la función f en x = 0. Como 1 sin x 1 2 x 1 sin x 2 1 2 1 2 1 sin x 1 sin x 2 x 2 2 Multiplicamos y dividimos por el conjugado del numerador para evitar el problema de la raíz cuadrada x0 lim 1 sin t t Entonces definiendo f(0) = ½ la función f es continua en x = 0. t 0 Funciones/Continuidad. Ejemplos 5 La función está definida si x ≠ 0. ¿ Es posible definir f(0) para que la función f sea continua en x = 0? Solución Concluimos que si f(0) = ½, la función x = 0. f es continua en Problemas de este tipo se resuelven, normalmente, hallando el límite (si existe) de la función en el punto en el que no está definida. Gráfica de la función f. Funciones/Continuidad. Resumen f continua, f(x) = 0 tiene solución. g no es continua, g(x) = 0 no tiene soluciones. g(x) = x – cos(x) f(x) = x – cos(x) A veces es necesario ver si la ecuación f(x) = 0 tiene solución o no. Una estrategia es: Si 1) f es continua en un intervalo, y 2) f toma valores positivos y negativos en el intervalo, entonces la ecuación f(x) = 0 tiene solución. Ejemplo La función f(x) = x – cos(x) es continua y toma valores positivos y negativos . Por tanto f(x) = 0 tiene solución. Funciones/Continuidad.