Download curvas cónicas en la vida real
Document related concepts
Transcript
CURVAS CÓNICAS EN LA VIDA REAL Basado en una presentación de la universidad de Zaragoza “rodeados por las cónicas”. ¿Qué son las curvas Cónicas? Cuando hablamos de las curvas cónicas nos estamos refiriendo a la circunferencia, la elipse, la hipérbola y la parábola. Pero la pregunta es ¿por qué se llama cónicas a dichas curvas?. La respuesta es bien sencilla a la par que obvia: Estas curvas son las que resultan de cortar un cono por un plano. El que salga una u otra depende de con que ángulo corte el plano al cono. SECCIONANDO UNA SUPERFICIE CÓNICA MEDIANTE UN PLANO CON DISTINTAS INCLINACIONES SE OBTIENEN TRES TIPOS DE CURVAS A LOS QUE APOLONIO LLAMA ELIPSES, PARÁBOLAS E HIPÉRBOLAS (la circunferencia es un caso particular de elipse). 3 SECCIONES DEL CONO LA SOMBRA DE UNA LINTERNA CIRCUNFERENCIA PARÁBOLA ELIPSE HIPÉRBOLA ¿CURVAS CÓNICAS EN LA PARED DE CASA? Sombras de una lámpara Con una lámpara con una tulipa cónica : sombra que proyecta la tulipa sobre la pared, siendo el haz de luz un cono y la pared el plano que corta al cono. Según las inclinaciones de la lámpara, veremos una elipse, una parábola o una hipérbola. Ir probando con distintas inclinaciones para ver cómo van cambiando las curvas. ELIPSE PARÁBOLA HIPÉRBOLA ORIGEN DE LAS CÓNICAS Menaechmus (siglo IV a.C.): mostró que las cónicas se obtienen al cortar un cono por planos no paralelos a la base. Apollonius de Perga (siglo III a.C.): el primero que las introdujo públicamente, escribiendo “Las Cónicas”, el más importante tratado antiguo sobre las secciones cónicas. Galileo (siglo XVI): demostró que las trayectorias de los proyectiles son parabólicas. Kepler (siglo XVII): rescató las cónicas al encontrar en la elipse la respuesta al enigma del movimiento planetario, descubriendo que el planeta Marte tiene órbitas elípticas y el sol está situado en uno de sus focos. Newton (siglo XVII): enunció la famosa ley de la gravitación universal, en base a este descubrimiento Los planetas se mueven en órbitas elípticas (el sol en uno de sus focos). El movimiento relativo de dos cuerpos es una cónica. El tipo de cónica depende de la velocidad relativa y de la distancia que los separa. Si la velocidad es pequeña, la órbita es cerrada y la cónica es una elipse. Al aumentar la velocidad, aumenta la excentricidad y la órbita se abre pasando por la parábola para llegar a la hipérbola. El astrónomo Kepler (1571-1630) descubrió que las órbitas que describen los planetas al girar alrededor del sol son elipses que tienen al sol en uno de sus focos. ELIPSE Elipse: Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante. Estos dos puntos fijos se llaman focos de la elipse. ¿ME ESCUCHAS? LÁMPARA DE DENTISTA LITOTRICIA Con dos emisores de energía colocados en dos reflectores elipsoidales que compartan un foco la eficacia es mucho mayor. En el foco común se situaría el cálculo renal a destruir. ELIPSE Y CICLISMO Bobby Julich, GANADOR de la Paris Niza 2005 con plato elíptico Harmonic O.Symetric BALÓN DE RUGBY ELIPSOIDE DE REVOLUCIÓN PARÁBOLA GOLDEN GATE. SAN FRANCISCO. PELOTA DE GOLF MOVIMIENTO PARABÓLICO EJEMPLOS DE TIRO PARABÓLICO Parábola: Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo (F) llamado foco y de una recta fija llamada directriz. HORNO SOLAR ¿Un poco de magia? HIPÉRBOLA Hipérbola: Es el lugar geométrico de los puntos del plano cuya diferencia de distancias entre dos puntos fijos es constante. Estos dos puntos fijos se llaman focos de la hipérbola . Los rayos provenientes de uno de los focos de una hipérbola se reflejan de manera que los rayos reflejados parecen provenir del otro foco. Esta es la llamada propiedad de reflexión de la hipérbola. Si apuntamos al foco de esta rama de hipérbola la bola rebotará en la banda y se dirigirá directamente al agujero. LORAN CHIMENEAS DE LAS CENTRALES TÉRMICAS ENGRANAJES CURVAS CÓNICAS EN ARQUITECTURA E INGENIERÍA ZAHA HADID - DUBAI OPERA HOUSE SANTIAGO CALATRAVA - AUDITORIO DE TENERIFE FRANK LLOYD WRIGTH - MUSEO GUGGENHEIM ÓSCAR NIEMEYER - CATEDRAL DE BRASILIA ZAHA HADID - ARTS CENTRE IN ABU DHABI OCEANOGRÁFICO DE VALENCIA PARÁBOLA CASA MILÁ (ANTONIO GAUDÍ). BARCELONA PARÁBOLA PUENTE SOBRE EL GUADIANA (SANTIAGO CALATRAVA. 1992) MÉRIDA. ANFITEATRO DE POMPEYA ELIPSE FIN