Download Transformaciones isométricas
Document related concepts
Transcript
CONGRUENCIA Y TRANSFORMACIONES Congruencia ¿Cuando dos figuras son congruentes? • Segmentos • Ángulos Congruencia de cuadrados ¿Cuándo dos cuadrados son congruentes? Congruencia de rectángulos ¿Cuándo dos rectángulos son congruentes? Congruencia de romboides ¿Cuándo dos romboides son congruentes? Congruencia de rombos ¿Cuándo dos rombos son congruentes? Congruencia de triángulos ¿Cuándo dos triángulos son congruentes? Congruencia de polígonos ¿Cuándo dos polígonos son congruentes? Congruencia de circunferencias TRANSFORMACIONES ISOMETRICAS DEL PLANO Transformaciones Las transformaciones convierten una figura en otra. Por ejemplo una circunferencia en otra Transformaciones isométricas Las transformaciones isométricas transforman una figura en otra... Transformaciones isométricas ¿Es o nó una transformación isométrica? Transformaciones isométricas ¿Es o nó una transformación isométrica? Transformaciones isométricas ¿Es o nó una transformación isométrica? Transformaciones isométricas ¿Es o nó una transformación isométrica? Transformaciones isométricas ¿Es o nó una transformación isométrica? Las traslaciones Las traslaciones • ¿En qué consiste? • Vector de traslación Las traslaciones • Ejemplos de traslaciones: Las teselaciones • Teselar o embaldosar: es ..... C A C D B A D B D B A B A C C D Teselar con traslaciones: Ejemplo: Se parte con un paralelógramo. Se traslada....... Se traslada...... Las teselaciones Se puede partir con dos lados del paralelógramo solamente: • O con una variación Teselaciones Traslaciones en el plano cartesiano Si tenemos un sistema de coordenadas en el plano, cada punto está determinado por dos coordenadas: C=(4,3) Traslaciones en el plano cartesiano Cada traslación está determinada por dos coordenadas: ( coordenadas del vector de traslación) En este caso (3,1) que son las coordenadas del vector marcado. “3 unidades hacia la derecha y 1 unidad hacia arriba” Traslaciones en el plano cartesiano Ejemplo 1: apliquemos al triángulo la traslación ( 3, -1) Traslaciones en el plano cartesiano Ejemplo 2: ¿Qué traslación se aplicó? Las rotaciones • Cada punto de la figura queda girado en un ángulo respecto a un vértice: Las rotaciones ¿Es una rotación? ¿Es una rotación? Las rotaciones ¿Es una rotación? ¿Es una rotación? Teselar con rotaciones Rotaciones en el plano cartesiano Rotamos en torno a un punto con dos coordenadas y en un ángulo dado ( que se mide en sentido contrario a los punteros del reloj) En el ejemplo tenemos centro ( 4,1) y ángulo de 65° Rotaciones en el plano cartesiano Ejemplo 1: apliquemos al triángulo la rotación en 45° con centro en ( 6, 2) Rotaciones en el plano cartesiano Ejemplo 2: ¿Qué rotación se aplicó? Rotaciones en el plano cartesiano Ejemplo 3: ¿Qué rotación se aplicó? Las reflexiones • Cada punto de la figura se refleja sobre una recta ( eje de reflexión) Las reflexiones ¿Es una reflexión? ¿Es una reflexión? Las reflexiones ¿Es una reflexión? ¿Es una reflexión? Teselar con reflexiones Reflexiones en el plano cartesiano Reflejemos el punto ( 4, 3)en torno al eje horizontal: (4,3) (4, -3) Reflexiones en el plano cartesiano Ejemplo 1: Reflejemos en torno al eje vertical : Reflexiones en el plano cartesiano Ejemplo 2: ¿Qué reflexión se aplicó? Reflexiones en el plano cartesiano Ejemplo 3: ¿Qué reflexión se aplicó?