Download optica - MED.UCA
Document related concepts
Transcript
OPTICA INSTRUMENTOS ÓPTICOS Dra. Marlene Rivarola OPTICA I- Naturaleza de la luz II- Propiedades de la luz III- Medios Refractantes : LENTES I- Naturaleza de la luz Teorías 1. Teoría corpuscular: ( 1665-1678 : I. Newton ) Admitía la emisión por el cuerpo luminoso de pequeños corpúsculos que impresionaban la retina 2. Teoría ondulatoria :( 1690 : C. Huygens ) Se trataba de ondas que se propagaban de la fuente luminosa al ojo I- Naturaleza de la luz Teorías 3. Teoría de las ondas electromagnéticas ( 1862 : Maxwell y 1867 : Hertz ) Admitía que los rayos luminosos estaban constituídos por variaciones periódicas de un campo eléctrico y un campo magnético 4. Teoría de los fotones ( 1900 : Planck ) Propuso que la emisión de la luz era discontínua como paquetes de energía llamados quantum I- Naturaleza de la luz Teorías En resumen la naturaleza de la luz Es ondulatoria y electromagnética y está constituída por fotones o quantum II- Propiedades de la luz 1. Propagación rectilínea de la luz 2. Se propaga en el vacío a una velocidad de 300.000 Km / seg 3. No se desvía por campos eléctricos ni magnéticos II- Propiedades de la luz 4. El rango de la luz visible es de 400-780 nm II- Propiedades de la luz 5. Independencia de los rayos luminosos : Las partes de un haz luminoso son independientes entre sí 6. REFLEXIÓN Es el regreso de la luz a su medio de origen cuando se encuentra con un medio diferente Ej : espejos REFLEXIÓN 6. REFLEXIÓN Rayo incidente Rayo reflejado r i normal a. b. El rayo incidente , el reflejado y la normal están en un mismo plano El ángulo de incidencia es igual al ángulo de reflexión 7. REFRACCIÓN * Es la desviación de la luz cuando pasa de un medio a otro de diferente densidad * Ocurre porque disminuye la velocidad Ej : aire - agua aire - vidrio 7. REFRACCIÓN Rayo incidente i Rayo refractado a. b. r normal El rayo incidente , el refractado y la normal están en un mismo plano Indice de refracción : sen i n sen r Refracción- Reflexión Refracción : Ley de Snell Sen i . n1 = sen r . n2 Sen α 1 Sen α 2 Sen i n Sen r 1 n2.1 n 1 2 2 Refracción . Cambio de velocidad 7. REFRACCIÓN Rayo incidente aire i Rayo refractado r normal agua Indice de refracción ( n ): es la capacidad de un material para desviar la luz Aire Agua 3 x 108 m/ seg 8 2,25 x 10 m/seg 1.33 Indice de refracción del agua 8. REFLEXIÓN INTERNA TOTAL Cuando un rayo incide desde un medio más denso a otro menos denso La refracción se aleja de la normal Ya no se refracta sino se refleja nuevamente II- Propiedades de la luz 8 . REFLEXIÓN INTERNA TOTAL aire 3 agua 2,25 i Ej: el ángulo límite entre agua-aire es 48° i Aumenta el Angulo de i y se aleja de la normal Angulo límite El que no permite la refracción Reflexión Interna Total La reflexión interna total es el fundamento de la fibra óptica 1 1 2 2 III- Medios refractantes LENTES Son sistemas ópticos con dos superficies refractantes • • • Clasificación • Convergentes o positivas Divergentes o negativas • III- Medios refractantes Se forma una imagen REAL : se encuentran en un plano Imagen VIRTUAL el mismo lado que los rayos incidentes CONVERGENTES positivas LENTES DIVERGENTES negativas LENTES Gruesas en el centro Convergentes Bordes delgados Biconvexas Los rayos después de refractarse se concentran en el foco ( se acercan al eje ) Imagen real Divergentes Bordes gruesos Biconcávas Los rayos al refractarse se alejan del eje Imagen virtual CONVERGENTES O POSITIVAS Los rayos se concentran en el foco, se acercan al eje forma una imagen :real Se forma unaSeimagen REAL formada por los rayos que salen de la lente y se encuentran en un plano DIVERGENTES O NEGATIVAS Los rayos se alejan del eje óptico Imagen VIRTUAL el mismo lado que los rayos incidentes se forma por la prolongación de los rayos Convergentes Imagen real El tamaño varía según la posición del objeto Divergentes Imagen virtual La imagen es siempre VIRTUAL DERECHA MENOR TAMAÑO MARCHA DE LOS RAYOS EN LENTES BICONVEXAS 1. Los rayos que inciden sobre la lente paralelos al eje principal se refractan en el lado opuesto pasando por el foco 2 Los rayos que inciden pasando por el foco se refractan paralelos al eje principal 3. Los rayos que pasan por el centro de la lente no se desvían Con dos de estos tres rayos notables se puede determinar la imagen Formación de imágenes en lentes biconvexas 1. Objeto Real,invertida 2F situado a una distancia igual a 2F, la imagen es igual 2. Objeto Real,invertida >2F situado a una distancia mayor que 2F, la imagen es menor Formación de imágenes en lentes biconvexas Real,invertida Entre F1 y F2 3. Objeto situado a una distancia entre F1 y F2 la imagen es MAYOR Formación de imágenes en lentes biconvexas F 4. Cuando el objeto está por dentro del foco la Imagen es VIRTUAL DERECHA MAYOR LENTES PODER DIOPTRICO Es la potencia de una lente y es igual a la inversa de la distancia focal P = 1 F Ej : distancia focal de 0,50 m = +2 dioptrías Si la lente es divergente la dioptría será negativa INSTRUMENTOS ÓPTICOS Lupa Microscopio simple Microscopio compuesto Microscopio electrónico LUPA : es una lente biconvexa única convergente - positiva La imagen que se forma es : VIRTUAL DERECHA MAYOR MICROSCOPIO SIMPLE Tiene una lente convergente positiva El objeto se coloca delante del foco La imagen es VIRTUAL DERECHA MAYOR Igual a la lupa MICROSCOPIO COMPUESTO Está constituído por dos lentes convergentes de pequeña distancia focal 1a. Lente : OBJETIVO : el objeto está entre F1 y F2 : la imagen es REAL - INVERTIDA - MAYOR Objeto dentro del foco 2a. Lente : OCULAR : forma una imagen VIRTUAL – DERECHA - MAYOR 2a. Lente convergente IMAGEN VIRTUAL DERECHA MAYOR 1a. Lente convergente IMAGEN REAL INVERTIDA MAYOR Microscopio compuesto Imagen del ocular e/F1-F2 Imagen del objetivo Dentro del F Lente objetivo Lente ocular MICROSCOPIO ELECTRÓNICO Se emplea rayos catódicos en lugar de luz visible El movimiento ondulatorio de los electrones le otorga mayor poder resolutivo Poder resolutivo : capacidad para dar imágenes individuales de puntos situados uno muy cerca del otro MICROSCOPIO ELECTRÓNICO • Utiliza tres tipos de bobinas ( para desviar los electrones ) • • 1. BOBINA CONDENSADORA 2. BOBINA OBJETIVO 3. BOBINA DE PROYECCIÓN La imagen debe ser registrada en una pantalla fluorescente o película fotográfica La muestra requiere cortes delgados AGUDEZA VISUAL Capacidad para percibir los detalles de un objeto La agudeza visual, se refiere a la capacidad de percibir señales luminosas emitidas por los objetos, lo cual permite discriminarlos según sus diferentes características. SISTEMA OPTICO DEL OJO 1. 2. 3. 4. 5. 6. CÓRNEA HUMOR ACUOSO IRIS CRISTALINO HUMOR VÍTREO RETINA CRISTALINO : lente biconvexa Refracta los rayos para que se formen en la retina TRABAJO PRÁCTICO DE AGUDEZA VISUAL La exploración de la agudeza visual comprende la evaluación de la visión: de lejos y de cerca. Para determinar la visión lejana se usa la tabla de Snellen y para la visión de cerca, la tabla de Jaege Normalmente las menores letras en las líneas, designadas “20” pueden ser leídas a 20 pies ( 6 m ), por lo que la agudeza visual se anota como “20/20”. El numerador indica la distancia en pies que media del sujeto a la tabla, que siempre será 20; ( 6 m El denominador, la distancia a la cual un ojo normal puede leer la línea de letras. Esta cifra está impresa al lado de cada línea de letras o figuras de la tabla TÉCNICA : • Sitúe a la persona a una distancia de 20 pies ( 6m ) de la tabla de Snellen, que ya debe estar previamente establecida, y pida a la persona que se tape un ojo con una tarjeta de cartón o con su palma de la mano ahuecada, mientras usted explora el otro ojo. •Pueden dejarse los lentes correctores, si el sujeto ya los usa, para evaluar si estos tienen la graduación adecuada. •Anotar la agudeza visual de cada ojo; la última línea que es capaz de leer en forma nítida INTERPRETACIÓN Agudeza visual normal : 20/20 ( leer las primeras 10 filas ) Agudeza visual disminuída : de bajo de 20/20 ( si no puede leer todas las filas ) AGUDEZA VISUAL TÉCNICA Se coloca a 6 m Se debe visualizar hasta la 8ª línea Visión 20/20 AV : normal