Download Trabajo, Potencia y Energía
Document related concepts
Transcript
Trabajo, Energía y Potencia Jimena Alvarado León VII Medicina U.Chile Campus Centro TRABAJO MECÁNICO Trabajo Mecánico • Es el realizado por alguna Fuerzas. • Es una Magnitud Escalar. • El trabajo efectuado por una fuerza aplicada durante un cierto desplazamiento se define como el producto escalar del vector fuerza por el vector desplazamiento. T W F d Unidades • En el Sistema Internacional, es el JOULE (newton por metro). 1Joule Newton metro • Donde 1 Joule (J) es el trabajo realizado por una fuerza de 1 newton para provocar el desplazamiento de un cuerpo igual a 1 metro en la misma dirección de la fuerza. Unidades • En el C.G.S, es el Ergio (dina por centímetro). 1Ergio dina centímetro • Donde 1 Ergio (erg) es… Conversión de Unidades 1Joule Newton metro 1Ergio dina centímetro 1 Joule 105 dina 102 centímetro 107 erg 1Ergio 105 N 102 metro 10 7 J Trabajo Mecánico • Condiciones Necesarias: – Debe haber una fuerza aplicada. – La Fuerza debe actuar en la misma dirección en que se desplaza el cuerpo. – La fuerza debe tener una componente a lo largo del desplazamiento. Trabajo Mecánico • Entonces trabajo es: Cantidad escalar igual el producto de las magnitudes del desplazamiento y de la componente de la fuerza en la dirección del desplazamiento. W componente de la fuerza desplazamiento F cos d Trabajo Mecánico W componente de la fuerza desplazamiento F cos d • Siendo el ángulo entre los vectores fuerza y desplazamiento. W F cos d W F cos d Fuerza Desplazamiento • Si el cuerpo se desplaza horizontalmente (1 metro) y se ejerce un trabajo perpendicular a ella (100 newton), el trabajo realizado por esta fuerza es: Desplazamiento W F cos d W 100N cos 90º 1m W 100N 0 1m 0 Fuerza Desplazamiento • O sea el cargar el peso de la mochila horizontalmente, no se hace trabajo, porque la fuerza (el peso) y el desplazamiento son perpendiculares. Fuerza Trabajo Resultante • Cuando varias fuerzas ejercen trabajo, hay que distinguir entre trabajo positivo y negativo. – Si la Fuerza y desplazamiento son en el mismo sentido, el trabajo es positivo. – Si se ejercen en sentido contrario, el trabajo es negativo. • Trabajo Resultante es la suma algebraica de los trabajos individuales que se ejercen por varias fuerzas en un mismo cuerpo. (Es igual al trabajo de la fuerza neta). Gráficos Trabajo • Fuerza v/s desplazamiento La Fuerza es constante Fuerza (newton) El área es el trabajo 5 W= F x d W= Fxd W= F x d W = 5 x 10 = 10 J 0 10 d (m) Gráficos Trabajo • Fuerza v/s desplazamiento Fuerza (newton) La Fuerza varía El área es el trabajo W= F x d 2 0 d (m) Trabajo y Energía • Mientras se realiza trabajo sobre el cuerpo, se produce una transferencia de energía al mismo, por lo que puede decirse que el trabajo es energía en movimiento. • El concepto de trabajo está ligado íntimamente al concepto de energía y ambas magnitudes se miden en la misma unidad: Joule. ENERGÍA Energía • Cantidad inmaterial globalmente constante en un sistema. • Durante la evolución de dicho sistema la energía toma formas diversas por el intermedio del trabajo de las fuerzas involucradas. • La energía puede materializarse en masa y la masa transformarse en energía en ciertos procesos físicos. Energía • Capacidad para realizar un trabajo. • Se mide en JOULE • Se suele representar por la letra E. • Ejemplo: Cuando un arquero realiza trabajo al tender un arco, el arco adquiere la capacidad de realizar la misma cantidad de trabajo sobre la flecha Tipos de Energía • Existen muchos tipos: – E. Mecánica: estado de movimiento. – – – – – – – • E. Cinética: en movimiento • E. Potencial: en reposo E. Calórica E. Eléctrica E. Química E. Eólica E. Solar E. Hidráulica E. Lumínica, etc. ENERGÍA ENERGÍA MECÁNICA Energía Mecánica • Es la energía que se debe a la posición o al movimiento de un objeto (estado de movimiento de un objeto). • Se denota: Em • Es una magnitud Escalar. • Existen 2 tipos: – E. Cinética: cuerpo en movimiento. – E. Potencial: cuerpo en reposo, energía de posición. Energía Mecánica • Todo cuerpo en movimiento o reposo posee energía mecánica. • Matemáticamente es la suma de todas las energías. Em Ec Epg Epe m v2 Ec 2 Epg Epg mgh k X2 2 ENERGÍA POTENCIAL Energía Potencial • Un objeto puede almacenar energía en virtud de su posición. • Es la energía que se almacena en espera de ser utilizada, porque en ese estado tiene el potencial para realizar trabajo. • Se denota: Ep • Es una magnitud Escalar. • Existen 2 tipos: – Ep Gravitacional: posición en la tierra. – Ep Elástica: tiene que ver con resortes y fuerza elástica. Energía Potencial Gravitacional • Para elevar objetos contra la gravedad terrestre se requiere trabajo. • Se define como: la Energía potencial debido a que un objeto se encuentra en una posición elevada. • La cantidad de ella que posee un objeto elevado es igual al trabajo realizado contra la gravedad para llevarlo a esa posición. (W = F d) Energía Potencial Gravitacional • Si el objeto se mueve con velocidad constante, se debe ejercer una fuerza igual a su peso (fuerza neta = 0), y el peso es igual a: m g • Por lo tanto para elevarlo una altura (h), se requiere una energía potencial gravitacional igual al trabajo. Energía Potencial Gravitacional = peso x altura Ep m g h mgh Energía Potencial Gravitacional • Es mayor a mayor masa y a mayor altura se encuentre. • El cuerpo debe estar en reposo Trabajo y Energía Potencial • El trabajo que puede realizar un objeto debido a su posición, requiere una energía igual a la Epg de este objeto. W Epg W mgh • A mayor altura, mayor trabajo. • La altura depende del sistema de referencia que se ocupe (no es lo mismo el trabajo que puede realizar un avión respecto a la cima de una montaña, un edificio o a nivel del mar, porque cambia la altura) Ejemplo Energía potencial • Ejemplo: Salto con garrocha • En el salto con garrocha el atleta usa la garrrocha para transformar la energía cinética de su carrera en energía potencial gravitacional. Un atleta alcanza una rapidez de 10 m/s. ¿A qué altura puede elevar un atleta su centro de gravedad?. • No hay fuerzas aplicadas. • La conservación de energía mecánica total da 0+mgh=mv2/2+0. • Por lo tanto, se obtiene h=v2/(2g). • Reemplazando los valores se llega a h=5,1 m. ENERGÍA CINÉTICA Energía Cinética • Es la energía que posee un cuerpo en virtud de su movimiento. • Se denota: Ec • Es una magnitud Escalar. • Es igual al trabajo requerido para llevarlo desde el reposo al movimiento o al revés. • Depende de la masa del cuerpo y la rapidez que lleva. m v2 Ec 2 Energía Cinética m v2 Ec 2 • Significa que: – al duplicarse la rapidez de un objeto, se cuadriplica su energía cinética. – Se requiere un trabajo cuatro veces mayor para detener dicho objeto. • La energía cinética es mayor, mientras mayor masa posea un cuerpo y mayor rapidez alcance. Trabajo y Energía Cinética • El trabajo que realiza una fuerza neta sobre un objeto es igual al cambio de la energía cinética del objeto. W Ec m V 2f m Vi2 W 2 2 • Un trabajo positivo, aumenta la energía cinética del objeto (Vf > Vi) • Un trabajo negativo, disminuye la energía cinética del objeto (Vf < Vi) CONSERVACIÓN DE LA ENERGÍA Conservación de la Energía “En cualquier proceso, la energía no se crea ni se destruye, sólo se transforma en otras modalidades. La energía total de un sistema es constante” Em Ec Epg m v2 Ec 2 Epg mgh Transformación de Energía Potencial a Cinética Em Epg Ec Epg mgh m v2 Ec 2 Conservación de la Energía Epg mgh Máx. Em Epg m v2 Ec 0 2 Em Epg Ec Epg mgh 0 m v2 Ec Máx. 2 Em Ec Conservación de la Energía Em Epg Ec LA ENERGÍA TOTAL ES CONSTANTE Ejemplo • Si un cuerpo de 5 kg de masa, se encuentra a una altura de 40 metros, y se suelta. Calcula: • el tiempo que se demora en llegar al suelo • la energía mecánica •La energía potencial y la cinética al segundo •La rapidez que llevaba al segundo Em Epg Ec Ejemplo •Datos • m = 5 kg • h = 40 m •el tiempo que se demora en llegar al suelo: d = Vi t + a t 2 40 = 0 t + 10 t 40 = 10 t 2 40 2 = t 10 4 = t t 2s 2 2 Ejemplo •Datos • m = 5 kg • h = 40 m •t=2s • la energía mecánica Em Epg máxima Em mgh Em 5 10 40(J) Em 2000 J Ejemplo •Datos • m = 5 kg • h = 40 m •La energía potencial y la cinética al segundo a t2 d = Vi t + 2 10 1 h= 2 h=5m 2 Ejemplo •Datos • m = 5 kg • h = 40 m •La energía potencial y la cinética al segundo Epg mgh Epg 5 10 5(J) Epg 250 J Vf at Vi V1s 10 1(m / s) V1s 10 (m / s) Ec (mv 2 ) /2 5 (10)2 Ec 2 500 Ec 250 J 2 POTENCIA MECÁNICA Potencia Mecánica • Es la rapidez con la que se realiza un trabajo. • Se denota: P • Es una magnitud Escalar. Trabajo W P tiempo t • Esto es equivalente a la velocidad de cambio de energía en un sistema o al tiempo empleado en realizar un trabajo. Unidades • En el Sistema Internacional, es el WATT Joule 1Watt segundo • Donde 1 Watt es la potencia gastada al realizar un trabajo de un Joule en 1 segundo. Otras Unidades • En el sistema C.G.S. es el Ergio/seg. • 1 kw = 1 kilowatt = 103 watts = 103 W • 1 MW = 1 megawatt = 106 watts = 106 W • 1 GW = 1 gigawatt = 109 watts = 109 W • En el sistema inglés se usa: – Caballo de vapor (hp ó cv): la potencia necesaria para elevar verticalmente una masa de 75 kg a la velocidad de 1 m/s. Y equivale a 746 W Potencia Mecánica • Un motor de alta potencia realiza trabajo con rapidez. • Si un motor de auto tiene el doble de potencia que la de otro, • No Significa que: – realice el doble de trabajo que otro. • Significa que: – Realiza el mismo trabajo en la mitad del tiempo. • Un motor potente puede incrementar le rapidez de un auto hasta cierto valor en menos tiempo que un motor menos potente. Potencia Mecánica • La potencia en términos generales, expresa la capacidad para ejecutar un trabajo en el menor tiempo posible. • Una fuente de energía, que puede mover 1 kg de peso por una distancia de 1 metro en un sólo segundo de tiempo, se considera más potente que otra capaz de desplazar el mismo peso en 2 segundos. Gráfico Potencia • Potencia v/s Tiempo El área mide la Energía mecánica Á=Pt Á = W t =W = E t Ejemplo • Una central hidroeléctrica posee caídas de agua, las cuales son utilizadas para movilizar los generadores que producirán energía eléctrica. Consideremos una caída de agua de altura h = 20 metros cuyo flujo es de 3000 litros por segundo. • Supongamos g = 10 m/s2. ¿Cuál es la potencia máxima que podrá ser generada? Ejemplo • Supongamos que antes de caer el agua (de masa M), está en reposo (Vi =0), por lo tanto en ese momento su energía cinética será nula. Y en ese punto su Em estará dada por su Epg. • Cuando esa agua llegue abajo, tendrá una energía cinética máxima igual a la Em. • Es esta energía cinética la que se transformará en eléctrica. Si la transformación es total: P= P= energia mgh m = = g h tiempo t t 3000 (l) m 10( 2 ) 20 (m) = 600000 W 1(s) s P = 6 105 W Ejercicio esquiador • Un esquiador de masa 60 kg desliza de una cuesta, partiendo del reposo, desde una altura de 50 m. Sabiendo que su velocidad al llegar al final de la cuesta es de 20 m/s, calcule la perdida de energía mecánica debido al roce considere g = 10 m/s2. Ejercicio esquiador • En Ejercicio del tobogán • un niño se desliza por un tobogán mostrado en la figura, cuyo masa es de 30 kg, partiendo del reposo en A, y deslizándose hasta B. • Despreciando las perdidas de energía y considerando g = 10 m/s2, calcule la velocidad que adquiere al llegar a B. Ejercicio carrito • Un carro situado en un punto A (ver la figura), parte del reposo y alcanza el punto B. • Calcule la velocidad del carro en B, sabiendo que 50% de su energía mecánica inicial se disipa a través del trayecto. • ¿Cual es el trabajo realizado entre A y B? e –20J Ejercicio carrito 2 • Una esfera parte del reposo en A y recorre el camino como muestra la figura, despreciando el roce determine la velocidad con que llega al punto B. 10 m/s Ejemplo Energia Mecánica • Una piedra se deja caer desde una altura de 15 m por encima del suelo. Sabiendo que su masa vale 5 kg y g = 10 m/s2, determine su energía cinética al llegar al suelo. Ejemplo Energia Mecánica • Un coche se deja caer desde una altura, como se muestra en la figura siguiente, considere g = 10 m/s2. Determinar: a) la velocidad del automóvil al chocar contra el suelo, b) la altura desde la que descendio Ejercicio E Mecánica 1 • Un cuerpo de masa 3 kg se deja caer desde cierta altura y llega al suelo con una velocidad de 40 m / s. Determine la altura desde la que cayo el cuerpo. Ejercicio E Mecánica 1 • Un esquiador desciende por una pendiente de nieve partiendo del reposo. ¿Cuál es su velocidad para llegar al punto B? Ejercicio E Mecánica 2 • Un carro está en movimiento en una montaña rusa, como se muestra en la figura. ¿Cuál es la velocidad del carro en el punto C? Ejercicio E Mecánica 3 • El carro fue abandonado en un (a). Comparar la energía cinética y potencial en cada punto.