Download Archivo de clase Fotosíntesis 2003
Document related concepts
no text concepts found
Transcript
Análisis del transporte de electrones en bioquímica A I1 X1 B I2 C D X2 1) Los componentes A y D son el dador y el aceptor de electrones exógenos, respectivamente. 2) Los componentes B y C de la cadena de transporte de electrones se encuentran en baja concentración en la membrana. 3) , y catalizan la transferencia de electrones 4) I1, I2 son inhibidores irreversibles de y , respectivamente. 5) X1 y X2 son dadores de electrones exógenos. Diferencia de potencial electroquímico de un ion Para transferir un mol de ion Xn+ a través de una membrana cuando : - [Xn+]B [Xn+]A , en ausencia de un campo eléctrico. G = 2.3 * R * T * log([Xn+]B/[Xn+]A) - [Xn+]B = [Xn+]A , en presencia de un campo eléctrico. G = - n * F * donde F: constante de Faraday; n: carga del ion; : potencial eléctrico - [Xn+]B [Xn+]A , en presencia de un campo eléctrico. G = - n * F * + 2.3 * R * T * log([Xn+]B/[Xn+]A) Potencial electroquímico del protón n = 1; log ([H+]B / [H+]A) = - pH H+ = - F * - 2.3 * R* T * pH Multiplicando por [1/(-F)] H+/(-F) = - [2.3 * R* T * (-F)] * pH A 25 oC, [2.3 * R* T * F] = 0.6 H+/(-F) = p (potencial protón motriz) p = + 0.6 * pH Energy transducing membranes. Chloroplast CHEMIOSMOTIC THEORY EXT INT AH A H+ + H B Electron transport ADP + Pi H+ ATP BH H+ H+-ATPase Flujo reverso de electrones AH A H+ ADP + Pi H+ B ATP BH H+ H+ H+ Uncoupled electron flow AH BH A H+ ADP + Pi B H+ ATP H+ Uncoupler How is ATP made? Photophosphorylation A H+ gradient in chloroplasts makes ATP via ATP-synthase. pp. 540 H+-ATPase membrana Organisms within the biosphere exchange molecules and energy Energy of sunlight Light (via plants) Useful chemical bond energy Autotrophs: complex carbon, glucose, amino acids Phototrophs & chemotrophs CO2, H2O Chemical oxidations (via iron & sulfur bacteria) Heterotrophs (e.g. some bacteria, animals, humans) Need 9 amino acids & 15 vitamins from outside sources 1st Law of Thermodynamics: In any process, the total energy of the universe remains constant. EXT LIGHT INT AHH2O A O2 H+ H+ B NADP ADP + Pi + H ATP BH NADPH H+ CARBON REACTIONS OBJETIVOS DE LA CLASE What is photosynthesis? The process by which plants, algae, and some bacteria use solar energy to drive the synthesis of organic molecules (e.g. sugars, starch, etc.) from carbon dioxide (CO2) and water (H2O). Fig. 2.40 Molecular Biology of the Cell, 4th. Ed. Estado de oxidación CO2 : + 4 (CH2O) : (0) 1. How are plants able to convert light energy into energy that can be utilized by both themselves and heterotrophs? What other organisms can do this? Photosynthesis reactions overview General reaction CO2 + H2O Carbon dioxide water ATP, NADPH (CH2O) + O2 Carbohydrate oxygen (e.g. sucrose or starch) ATP, NADPH Glucose synthesis 6 CO + 6 H O C6H12O6 + 6 O2 2 2 carbon water glucose oxygen dioxide Go’ = +686 kcal/mol Photosynthesis involves two parts: 1. Light reactions (mediated by chlorophylls) • use light to generate ATP, NADPH 2. Carbon reactions (also called, “Benson-Calvin cycle”) • use ATP, NADPH, CO2 to synthesize sugar & starch Occurs in: prokaryotes: bacteria, blue green algae, in cytoplasmic membrane eukaryotes: chloroplasts Anatomy of a plant cell Fig. 14.34. Molecular Biology of the Cell, 4th. Ed. 3 distinct membranes: outer, inner, thylakoid 3 separate internal compartments: intermembrane, stroma, thylakoid lumen carbon reactions An overview of the chloroplast grana light reactions Size = 5 m pp. 529 Chlorophyll pp. 530 Absorption process Transition of an electron from the ground state to an excited state provided: A) The energy gap [ground state excited state] matches the wavelength of light [E = h . c . -1] B) 1) the e- moves in a straight line from the ground state to the excited state 2) the translation charge across a chromophore generates a transition electric dipole moment () 3) dictates the potential extent of absorption quantified as the extintion coefficient S1 T1 P So InterSystem crossing Photoproduct formation Phosphorescence Non-radiative deactivation Radiative deactivation Fluorescence F = photons emitted / photons absorbed F = kR kR + kNR + kISC + kPR Deactivation processes of the excited states JCE 76: 1555 (1999) Absorption and emission spectra of biphenyl Chlorophyll. Absorption and emission spectra E1 > E2 1 < 2 S1 S2 E2 = h * 2 E1 = h * 1 So E3 = h * 3 E 1 > E 2 > E 3 1 < 2 < 3 Other pigments, antenna pigments, accessory pigments Reflects green light; absorbs rest Reflects yellow light; absorbs rest Reflects blue light; absorbs rest Absorbance spectra of other pigments The combined absorption of all the chlorophylls cover the entire spectrum of visible light. A N T E N A h2 (Chl) h1 reacción D+ D Centro de * (Chl) A (Chl)+ A- Interconversión de la clorofila Structure of a photocenter Electron transfer from accessory (i.e. antennae) pigments to reaction center. LIGHT Antenna pigments pp. 543 LUZ D D+ P P+ P* A A- Potenciales de óxido-reducción en el centro de reacción luz P680 P680 [P680]+ + e [P680] [P680]+ + e [P680] [P680 ] : estado excitado; Eo = 1.1 volt Eo = - 0.7 volt [P680] : estado basal The “Z” scheme of photosynthesis 2 H2O + NADP+ O2 + NADPH proton gradient O2 pp. 538 Photosystem II Thylakoid membrane Transfers electrons from water to plastiquinone (thus oxidizing it to O2) Generates proton (H+) gradient between thylakoid lumen and stroma pp. 534 Photosystem I Thylakoid membrane Generates reduced ferredoxin (Fd) PSI reduces NADP+ to NADPH (Fd-NADP-reductase). pp. 537 Overview of electron flow through thylakoid membrane proteins The Cell: a molecular approach, fig. 10-22 Non-cyclic photophosphorylation when PSII is inhibited Cyclic photophosphorylation Pseudocyclic photophosphorylation EXT LIGHT INT AHH2O A O2 H+ H+ B NADP ADP + Pi + H ATP BH NADPH H+ CARBON REACTIONS OBJETIVOS DE LA CLASE Autotrophy . . . . . 2 H+ H2O PETS O2 2 Fdox S S FT R 2 Fdred HS SH FT R LIGHT S S Trx HS SH Trx S S En z HS The ferredoxinthioredoxin system products SH Enz substrates RUBISCO ADP RUBISCO ATP CATALYTIC CYCLE RAinactive RAactive E-NH3+. RuBP E-NH-CO2-. Mg2+.RuBP CO2 O2 E-NH3+ Products RuBP RuBP H+ E-NH2 CO2 E-NH-CO2H+ Mg2+ E-NH-CO2- . Mg 2+ Residencia del DNA que codifica para Rubisco Organismo LSU SSU Algas verdes, plantas, Euglena cloropl. Núcleo Algas rojas cloropl. cloropl. Algas marrones cloropl. cloropl. Dinoflagelados Núcleo X L8S8 L2 RUBISCO chloroplast O2 glutamate glycerate -keto glutarate 2 glycolate NH4+ peroxisome O2 2 serine CO2 glycine mitochondria Carbon and nitrogen flow in the C2 oxidative photorespiratory cycle En la presentacion dice que es una planta C4. Documentos lindos \facultad \para usar \photos\photosynth \general1 (carpeta) \ C4leaf Plant performance Plant gH2O/g DM C3 C4 CAM 450-950 250-350 50-55 Topt(oC) 15-25 30-40 ca. 35 Ton.DM/(Ha.yr) 20-25 35-40 low & variable C4 photosynthesis. CO2 fixation mesophyll PEP + H2O + CO2 oxalacetate + Pi oxalacetate + NADPH malate + NADP+ PEPcarboxylase NADP-malate dehydrogenase (bundle sheath) C4 photosynthesis. CO2 assimilation malate + NADP+ NADP-malic enzyme pyruvate + NADPH + CO2 mesophyll pyruvate + Pi + ATP PEP + AMP + PPi Pyruvate orthophosphate dikinase PPi + H2O AMP + ATP 2 ADP 2 Pi pyrophosphatase adenylate kinase Cost of concentrating CO2 within the bundle sheath cell mesophyll CO2 + 2 ATP + 2 H2O CO2 + 2 ADP + 2 Pi bundle sheath C4 C3 Crassulacean acid metabolism NIGHT DAY BIBLIOGRAFIA PLANT PHYSIOLOGY, 3rd. Ed., L.Taiz & E.Zieger Eds., Ch.7. Photosynthesis: the light reactions Ch.8. Photosynthesis: carbon reactions Sinauer Associates, Sunderland, MA. (2002) BIOLOGIA CELULAR Y MOLECULAR, 4th. Ed., H.Lodish et al. Eds., Ch.16. Energética celular: glicólisis, oxidación aeróbica, y fotosíntesis. Editorial Panamericana, Buenos Aires. (2000) BIOENERGETICS 2, D.G.Nicholls & S.J.Ferguson. Academic Press, London. (1992)