Download Axiomas de un espacio vectorial

Document related concepts

Espacio vectorial wikipedia , lookup

Álgebra lineal wikipedia , lookup

Álgebra sobre un cuerpo wikipedia , lookup

Producto escalar wikipedia , lookup

Aplicación lineal wikipedia , lookup

Transcript
AXIOMAS DE UN
ESPACIO VECTORIAL
Álvarez Lapizco Miguel Ángel
13211477
EL ESPACIO VECTORIAL
• En álgebra abstracta, un espacio vectorial es una estructura
algebraica creada a partir de un conjunto no vacío, una operación interna
(llamada suma, definida para los elementos del conjunto) y una operación
externa (llamada producto por un escalar, definida entre dicho conjunto y
otro conjunto, con estructura de cuerpo), con 8 propiedades
fundamentales.
• A los elementos de un espacio vectorial se les llama vectores y a los
elementos del cuerpo, escalares.
DEFINICIÓN Y PROPIEDADES
BÁSICAS
• El espacio vectorial Rn es un conjunto de elementos llamados vectores en
los que se definen dos operaciones, la adición y la multiplicación por un
escalar. Se sabe que el espacio vectorial Rn es cerrado bajo estas
operaciones; las suma de dos vectores en Rnpertenece a Rn y la
multiplicación por un escalar en Rn también pertenece a Rn. El espacio
vectorial Rn también posee otras propiedades algebraicas. Por ejemplo, se
sabe también que los vectores en Rn son conmutativos y asociativos bajo la
adición:
• u+v=v+u
u + (v + w) =(u + v) + w
•
AXIOMAS DE UN ESPACIO
VECTORIAL
1.- Si x Є V y y Є V, entonces x + y Є V (Cerradura bajo la suma).
2.- Para todo x, y, z en V, (x + y) + z = x + (y + z)
(Ley asociativa de la suma de vectores)
3.- Existe un vector 0 Є V tal que para todo
x Є V, x + 0 = 0 + x = x
4.- Si x Є V, existe un vector –x en V tal que x + (–x) = 0
(–x se llama inverso aditivo de x)
AXIOMAS DE UN ESPACIO
VECTORIAL
5.- Si x y y están en V, entonces x + y = y + x.
(Ley conmutativa de la suma de vectores).
6.- Si x Є V y α es un escalar, entonces αx Є V
(Cerradura bajo la multiplicación por un escalar).
7.- Si x y y estan en V y a es un escalar, entonces a(x + y) = ax + ay (Primer
Ley Dsitributiva).
AXIOMAS DE UN ESPACIO
VECTORIAL
8.- Si x Є V y α y β son escalares, entonces (α + β)x = αx + βx
(Segunda ley distributiva)
9.- Si x Є V y α y β son escalares, entonces α(βx) = (αβ)x
(Ley asociativa de la multiplicación por escalares)
10.- Para cada vector x Є V, 1x = x.
EJEMPLOS
• Ej. 1:
Espacios vectoriales de matrices.
Considere el conjunto de matrices reales de 2 x 2. Denote este conjunto
como M22. En la sección de matrices se definieron las operaciones de
adición y multiplicación por un escalar en este conjunto y, de hecho, éste
forma un espacio vectorial. Se analizarán algunos axiomas para comprobar
esto.
EJEMPLOS
• dos matrices de 2 x 2 cualesquiera. Se tiene entonces que:
Axioma 1:
u + v es una matriz de 2 x 2. Por consiguiente, M22 es cerrada bajo la adición.
Axiomas 2 y 5:
De acuerdo al tema anterior de matrices, se sabe que las matrices de 2 x 2 son
conmutativas y asociativas bajo la adición.
EJEMPLOS
• Axioma 3:
La matriz cero de 2 x 2 es
Axioma 4:
Si
ya que
, entonces
, puesto que:
ÁLGEBRA LINEAL
Gracias por su atención.