Download Glucosa - cualiplumerillo
Document related concepts
Transcript
Fructosa Fórmula estructural de la fructosa Fructosa, o levulosa, es una forma de azúcar encontrada en las frutas y en la miel. Es un monosacárido con la misma fórmula empírica que la glucosa pero con diferente estructura. Es una cetohexosa (6 átomos de carbono). Su poder energético es de 4 kilocalorías por cada gramo. Su formula química es C6H12O6. Todas las frutas naturales tienen cierta cantidad de fructosa (a menudo con glucosa), que puede ser extraída y concentrada para hacer un azúcar alternativo. Efectos sobre la salud Se ha utilizado tradicionalmente como edulcorante para los diabéticos. A diferencia del azúcar refinado que se absorbe instantáneamente produciendo una subida y una bajada rápida de energía, la fructosa, es metabolizada y guardada, en parte, por el hígado en forma de glucógeno como reserva para cuando necesitemos hacer un esfuerzo. Sin embargo puesto que la fructosa acaba transformándose en glucosa produciendo una elevación glucémica en sangre ya no se considera un edulcorante recomendable para las personas con diabetes. La fructosa endulza más que la glucosa, por lo que se necesita menor cantidad, consecuentemente se consume menos calorías, dado que es del mismo valor calórico que la glucosa, 400 Kcal. por 100 gm Muchas personas, sin saberlo, son más o menos intolerantes a la fructosa y no pueden asimilar bien alimentos con alto contenido de este azúcar. En tal caso, se dice que sufren intolerancia a la fructosa. Glucosa Ciclación de la glucosa La glucosa o dextrosa, es un monosacárido con fórmula empírica C6H12O6, la misma que la fructosa pero con diferente posición relativa de los grupos OH y O=. Es una hexosa, es decir, que contiene 6 átomos de carbono, y es una aldosa, esto es, el grupo carbonilo está en el extremo de la molécula. Es una forma de azúcar que se encuentra libre en las frutas y en la miel. Características Todas las frutas naturales tienen cierta cantidad de glucosa (a menudo con fructosa), que puede ser extraída y concentrada para hacer un azúcar alternativo. Pero a nivel industrial, tanto la glucosa líquida (jarabe de glucosa) como la dextrosa (glucosa en polvo) se obtienen a partir de la hidrólisis enzimática de almidón de cereales (generalmente trigo o maíz). La glucosa, libre o combinada, es el compuesto orgánico más abundante de la naturaleza. Es la fuente principal de energía de las células, mediante sus oxidación catabólica, y es el componente principal de polímeros de importancia estructural como la celulosa y de polímeros de almacenamiento energético como el almidón y el glucógeno. En su forma D-Glucosa, sufre una ciclación hacia su forma hemiacetálica para dar sus formas furano y pirano (D-glucofuranosa y D-glucopiranosa) que a su vez presentan anómeros alfa y beta. Estos anómeros no presentan diferencias de composición estructural, pero si diferentes características físicas y químicas. La D-(+)-glucosa es uno de los compuestos más importantes para los seres vivos, incluyendo a seres humanos. En su forma ß-D-glucopiranosa, una molécula de glucosa se une a otra gracias a los -OH de sus carbonos 1-4 para formar celobiosa a través de un enlace ß, y al unirse varias de estas moléculas, forman celulosa. Diferentes representaciones de las formas linela y cíclica de la D-glucosa Forma lineal de D-glucosa α-Dglucopiranosa β-Dglucopiranosa Forma lineal D-glucosa α-Dglucopiranosa β-Dglucopiranosa Forma lineal de D-glucosa Forma lineal de D-glucosa Biosíntesis Los organismos autótrofos, como las plantas, la glucosa es sintetizada en la fotosíntesis a partir de compuestos inorgánicos como agua y dióxido de carbono, según la reacción: 6 CO2 + 6 H2O → C6H12O6 + 6 O2 Los seres heterótrofos, como los animales, son incapaces de realizar este proceso y toman la glucosa de otros seres vivos o la sintetizan a partir de otros compuestos orgánicos. La glucosa puede sintetizarse a partir de otros azúcares, como fructosa o galactosa.Otra posibilidad es la síntesis de glucosa a partir de molécula no glucídicas, proceso conocido como gluconeogénesis; hay diversas moléculas precursoras, como el lactato, el oxalacetato y el glicerol.1 Lactosa Fórmula de la lactosa Molécula de lactosa, descompuesta en glucosa y en galactosa La lactosa es un disacárido formado por la unión de una glucosa y una galactosa. Concretamente intervienen una ß-galactopiranosa y una ßglucopiranosa unidas por los carbonos 1 y 4 respectivamente. Al formarse el enlace entre los dos monosacáridos se desprende una molécula de agua. Además, este compuesto posee el hidroxilo hemiacetálico, por lo que da la reacción de Benedict. A la lactosa se la llama también azúcar de la leche, ya que aparece en la leche de las hembras de los mamíferos en una proporción del 4 al 5%. La leche de camella, por ejemplo, es rica en lactosa. En los humanos es necesaria la presencia de la enzima lactasa para la correcta absorción de la lactosa. Cuando el organismo no es capaz de asimilar correctamente la lactosa aparecen diversas molestias cuyo origen se denomina intolerancia a la lactosa. Cristaliza con una molécula de agua de hidratación, con lo que su fórmula es: C12H22O11·H2O, luego se la puede también llamar lactosa monohidrato. Su masa molar es 360,32 g/mol. Amilopectina Amilopectina La amilopectina es un sacárido que se diferencia de la amilosa en que contiene ramificaciones que le dan una forma molecular parecida a la de un árbol: las ramas están unidas al tronco central (semejante a la amilosa) por enlaces α-D-(1,6), localizadas cada 25-30 unidades lineales de glucosa. Su peso molecular es muy alto ya que algunas fracciones llegan a alcanzar hasta 200 millones de daltones. La amilopectina constituye alrededor del 75% de los almidones más comunes. Algunos almidones están constituidos exclusivamente por amilopectina y son conocidos como céreos. La amilopectina de patata es la única que posee en su molécula grupos éster fosfato, unidos más frecuentemente en una posición O-6, mientras que el tercio restante lo hace en posición O-3. Se diferencia del glucógeno por tener las ramificaciones α-(1,6) cada 25-30 monómeros, pues éste tiene sus ramificaciones cada 812 unidades de glucosa. Glucógeno Estructura molecular del glucógeno El glucógeno es un polisacárido de reserva energética de los animales, formado por cadenas ramificadas de glucosa; es soluble en agua, en la que forma dispersiones coloidales. Abunda en el hígado y en el músculo. Estructura del glucógeno Estructura del glucógeno Su estructura puede parecerse a la de amilopectina del almidón, aunque mucho más ramificada que ésta. Está formada por varias cadenas que contienen de 12 a 18 unidades de α-glucosas formadas por enlaces glucosídicos 1,4; uno de los extremos de esta cadena se une a la siguiente cadena mediante un enlace α-1,6-glucosídico, tal y como sucede en la amilopectina. Una sola molécula de glucógeno puede contener más de 120.000 moléculas de glucosa. La importancia de que el glucógeno sea una molécula tan ramificada es debido a que: 1. La ramificación aumenta su solubilidad. 2. La ramificación permite la abundancia de residuos de glucosa no reductores que van a ser los lugares de unión de las enzimas glucógeno fosforilasa y glucógeno sintetasa, es decir, las ramificaciones facilitan tanto la velocidad de síntesis como la de degradación del glucógeno. El glucógeno es el polisacárido de reserva energética en los animales que se almacena en el hígado (10% de la masa hepática) y en los músculos (1% de la masa muscular) de los vertebrados. Además, pueden encontrarse pequeñas cantidades de glucógeno en ciertas células gliales del cerebro. Gracias a la capacidad de almacenamiento de glucógeno, se reducen al máximo los cambios de presión osmótica que la glucosa libre podría ocasionar tanto en el interior de la célula como en el medio extracelular. Cuando el organismo o la célula requieren de un aporte energético de emergencia, como en los casos de tensión o alerta, el glucógeno se degrada nuevamente a glucosa, que queda disponible para el metabolismo energético. En el hígado la conversión de glucosa almacenada en forma de glucógeno a glucosa libre en sangre, está regulada por la hormona glucagón y adrenalina. El glucógeno hepático es la principal fuente de glucosa sanguínea, sobre todo entre comidas. El glucógeno contenido en los músculos es para abastecer de energía el proceso de contracción muscular. El glucógeno se almacena dentro de vacuolas en el citoplasma de las células que lo utilizan para la glucólisis. Estas vacuolas contienen las enzimas necesarias para la hidrólisis de glucógeno a glucosa. Metabolismo del glucógeno Glucogénesis La síntesis de glucógeno a partir de glucosa se llama glucogénesis y se produce gracias al enzima glucógeno sintetasa. La adición de una molécula de glucosa al glucógeno consume dos enlaces de alta energía: una procedente del ATP y otra que procede del UTP. La síntesis del glucógeno tiene lugar en varios pasos: En primer lugar, la glucosa es transformada en glucosa-6-fosfato, gastando una molécula de ATP. glucosa + ATP → glucosa-6-P + ADP A continuación se transforma la glucosa-6-fosfato en glucosa-1fosfato glucosa-6-P ←→ glucosa-1-P Se transforma la glucosa-1-fosfato en UDP-glucosa, con el gasto de un UTP. glucosa-1-P + UTP → UDP-glucosa + PPi La glucógeno sintetasa va uniendo UDP-glucosa para formar el glucógeno. (glucosa)n + UDP-glucosa → (glucosa)n+1 + UDP Por una reacción de ruptura de las triosas pasa fructosa 1-6 di-fosfato a fosfato de hidroxicetona (o a gliceraldehido-3 fosfato). Glucogenolisis Debido a la estructura tan ramificada del glucógeno, permite la obtención de moléculas de glucosa en el momento que se necesita. La enzima glucógeno fosforilasa va quitando glucosas de una rama del glucógeno hasta dejar 4 moléculas de glucosa en la rama, la glucantransferasa toma tres de estas glucosas y las transfiere a la rama principal y por último, la enzima desramificante quita la molécula de glucosa sobrante en la reacción. Enzimas de la glucogenolisis En la glucogenolisis participan dos enzimas: La glucógeno fosforilasa, que cataliza la fósforolisis o escisión fosforolítica de los enlaces alfa 1-4 glicosídicos, que consiste en la separación secuencial de restos de glucosa desde el extremo no reductor, según la reacción: (glucosa) n + Pi3 ←→ (glucosa) n-1 + glucosa-1-P Esta reacción es muy ventajosa para la célula, en comparación con una de hidrólisis. Enzima desramificante del glucógeno. La glucógeno fosforilasa no puede escidir los enlaces O-glicosídicos en alfa(1-6). La enzima desramificante del glucógeno posee dos actividades: alfa(1-4) glucosil transferásica que transfiere cada unidad de trisacárido al extremo no reductor, y elimina las ramificaciones por los enlaces alfa 1-6 glicosídicos: glucosa-6-P + H2O2 → glucosa + Pi Regulación de la glucogénesis y la glucogenolisis La regulación del metabolismo del glucógeno se ejecuta a través de las dos enzimas; la glucógeno sintetasa que participa en su síntesis, y la glucógeno fosforilasa en la degradación. La glucógeno sintetasa tiene dos formas: glucógeno sintetasa I (independiente de la presencia de glucosa 6 fosfato para su acción), que no está fosforilada y es activa, y la glucógeno sintetasa D (dependiente de la presencia de glucosa 6 fosfato para su acción), que está fosforilada y es menos activa. La otra enzima, la glucógeno fosforilasa, también tiene dos formas: glucógeno fosforilasa b, menos activa, que no está fosforilada y la glucógeno fosforilasa a, activa, que está fosforilada. Tanto la glucógeno sintetasa como la glucógeno fosforilasa se regulan por un mecanismo de modificación covalente. Las hormonas adrenalina y glucagón activan las proteínas quinasas que fosforilan ambas enzimas, provocando activación de la glucógeno fosforilasa, estimulando la degradación del glucógeno; mientras que la glucógeno sintetasa disminuye su actividad, lo que inhibe la síntesis de glucógeno. La hormona insulina provoca la desfosforilación de las enzimas, en consecuencia la glucógeno fosforilasa se hace menos activa, y la glucógeno sintetasa se activa, lo que favorece la síntesis de glucógeno. Es decir, que hormonas como la adrenalina y el glucagón favorecen la degradación del glucógeno, mientras que la insulina estimula su síntesis. Trastornos metabólicos Las glucogenosis o trastornos del metabolismo del glucógeno son un conjunto de nueve enfermedades genéticas, la mayoría hereditarias, que afectan la vía de formación del glucógeno y las de su utilización.