Download Document

Document related concepts

Sistema de ecuaciones lineales wikipedia , lookup

Sistema de ecuaciones algebraicas wikipedia , lookup

Análisis de nodos wikipedia , lookup

Mecanismo de cuatro barras wikipedia , lookup

Método de Euler wikipedia , lookup

Transcript
SISTEMAS DE ECUACIONES
Anterior
UNIVERSIDAD CATOLICA DEL ECUADOR
SEDE IBARRA
MÉTODO GRÁFICO
MÉTODO DE SUSTITUCIÓN
MÉTODO DE IGUALACIÓN
MÉTODO DE REDUCCIÓN
PROBLEMAS PARA RESOLVER CON SISTEMAS DE
ECUACIONES LINEALES
Ing. Marco Almeida
DOCENTE
Fin
Siguiente
SISTEMAS DE ECUACIONES
Anterior
Resuelve gráficamente:
2x + y = 6
y = 6 – 2x
x – 2y = 8
– 2y = 8 – x
x
y
–2
6–2·(–2)= 6 + 4 = 10
3
6–2·3 = 6 – 6 = 0
7
6–2·7 = 6 – 14 = –8
8–x
y = ––––
–2
x
–3
–4
0
6
y
8 – (–3)
–2
8 – (–4)
–2
8–0
–2
8–6
–2
8 +3
=
=
=
=
8
–2
2
–2
–2
8+4
–2
=
=
11 salen
–2 decimales
12
–2
= –6
x=4
y = –2
= –4
= –1
Hay que representar cada ecuación. Despejamos la letra y en la primera ecuación.
Hay que hacer una tabla de valores para obtener tres puntos de la recta.
Se eligen tres números (mejor que no sean consecutivos).
Se sustituyen estos tres números en la fórmula de y.
Se representan los puntos obtenidos.
Con la regla se traza la recta que ha de pasar perfectamente por los tres puntos.
Se hace lo mismo con la otra ecuación.
Se eligen los tres valores de x que no provoquen decimales al calcular y.
La solución del sistema se obtiene de las coordenadas del punto de intersección de las dos rectas.
Volver al menú
Siguiente
SISTEMAS DE ECUACIONES
Resuelve por el método de sustitución:
4 – 3x
3x + 2y = 4
2y = 4 – 3x
y = –––––
2
5x – 3y = –25
4 – 3x
5x – –
3 –––––
2
1
4 – 3( –2 )
y = ––––––––
2
4 +6
y = –––––
2
10
y = ––
2
= – 25
12 – 9x
5x
–
= – 25
–– ––––––
––
2
1
1
Anterior
m.c.m. = 2
y=5
2·5x – 1(12 – 9x) – 2·25
–––––––––––––– = ––––––
2
2
10x – 12 + 9x = – 50
10x + 9x = – 50 + 12
19x
= – 38
–38
x = –––
19
x = –2
Hay que despejar una incógnita de una de las ecuaciones que no tenga coeficiente negativo, por ejemplo
la y de la primera ecuación.
Ahora se sustituye la fórmula obtenida en la otra ecuación.
Hay que quitar el paréntesis multiplicando el 3 (sin el signo) por la fracción.
El signo menos se copia y se multiplican las dos fracciones.
Se escribe todo en forma de fracción y se saca m.c.m. de los denominadores.
Falta calcular el valor de y. Se cambia el valor de x en la fórmula de y.
Volver al menú
Siguiente
SISTEMAS DE ECUACIONES
Resuelve por el método de igualación:
–14 – 4y
x = –––––––
5x + 4y = –14 5x = –14 – 4y
5
14 + 8y
–3x – 8y = 14 –3x = 14 + 8y
x = ––––––
–3
–14 – 4y 14 + 8y
––––––– = ––––––
–3
5
–3(–14 – 4y) = 5(14 + 8y)
+ 42 + 12y = 70 + 40y
12y – 40y = 70 – 42
Anterior
14 + 8( –1 )
x = –––––––––
–3
14 – 8
x = –––––
–3
6
x = ––
–3
x = –2
– 28y = 28
28
y = –––
–28
y = –1
Hay que despejar la misma incógnita en las dos ecuaciones, por ejemplo la x.
Se igualan las dos fórmulas obtenidas.
Para quitar los denominadores se multiplica en cruz (dos fracciones son equivalentes si al multiplicar
en cruz se obtiene el mismo resultado).
El valor de la otra incógnita se obtiene con cualquiera de las dos fórmulas que tenemos.
Volver al menú
Siguiente
SISTEMAS DE ECUACIONES
Resuelve por el método de reducción:
+6
11x + 6y = 10
66x + 36y = 60
–6x + 9y = 15
11
–66x + 99y = 165
+ 135y = 225
225 :5
45:9
5
y = –––––– = –––– = –
3
135 :5
27:9
Anterior
5 = 10
11x + 6 · ––
3
30 = 10
11x + ––
3
11x + 10 = 10
11x = 10 – 10
11x = 0
0 = 0
x = ––
10
11x + 6y = 10
–6x + 9y = 15
–9
+6
–99x – 54y = –90
–36x + 54y = 90
–135x
= 0
0
x = –––– = 0
–135
Hay que eliminar una de las incógnitas sumando las ecuaciones pero antes hay que prepararlas. Vamos
a eliminar la letra x . Hay que observar los coeficientes de esta letra.
Se cambian de orden y uno de ellos de signo.
Ahora se multiplica la primera ecuación por +6 y la segunda por 11.
Sumamos las ecuaciones para eliminar las x.
Se calcula el valor de x sustituyendo en cualquiera de las ecuaciones de partida.
También se puede calcular x eliminando las y.
Volver al menú
Siguiente
SISTEMAS DE ECUACIONES
Anterior
Si –––––––––––––––––––––––
la mitad del número verde –––––––
es igual –––––––––––––––––
al triple del amarillo ––––––––
menos 3, el amarillo es más rápido que el
verde, los dos suman 29, y el verde es más espabilado que el amarillo, ¿sabrías decir cuáles son
––––––––––––––––
estos dos números?
x
–
=
2
x = número verde
y = número amarillo
3y
x = ––
3y – –
3
–
2
1
1
–3
x + y = 29
x = 6y – 6
x + y = 29
x 2·3y – 2·3
– = –––––––––
2
2
x = 6y – 6
x = 6·5 – 6
6y – 6
+ y = 29
6y – 6 + y = 29
x = 30 – 6
x = 24
6y + y = 29 + 6
7y = 35
35
y = ––
7
y=5
x e y son los números que se piden.
Se van leyendo las condiciones y se van traduciendo al lenguaje algebraico.
Se resuelve el sistema por cualquier método. En este caso interesa por sustitución ya que tenemos
despejada la letra x.
Volver al menú
Siguiente
SISTEMAS DE ECUACIONES
Anterior
En el bolsillo derecho de mi chaqueta gris tengo diez monedas, que todas juntas suman 3´20€.
¿Sabrías decirme cuántas son de medio euro y cuántas de veinte céntimos de euro?
x = número de monedas de 0’50€
y = número de monedas de 0´20€
x + y = 10
x = 10 – y
0´50x + 0´20y = 3´20
0´50x = 3´20 – 0´20y
3´20 – 0´20y
x = ––––––––––
0´50
3´20 – 0´20y
10 – y = –––––––––––
0´50
0´50(10 – y) = 3´20 – 0´20y
5 – 0´50y = 3´20 – 0´20y
– 0´50y + 0´20y = 3´20 – 5
x = 10 – 6
x = 4 monedas de 0´50€
– 0´3y = 1´8
1´8
y = –––
0´3
y = 6 monedas de 0´20€
Llamamos x e y a lo que se pide calcular.
Con el dato de las diez monedas se escribe una ecuación.
Con el valor de las monedas se escribe otra ecuación.
x monedas de 0´50€ valen 0´50·x
y monedas de 0´20€ valen 0´20·y
Se resuelve el sistema por cualquier método. Por ejemplo por igualación.
Volver al menú
Siguiente
SISTEMAS DE ECUACIONES
Anterior
Si en un examen tipo test de 40 preguntas has sacado un 7, ¿cuántas preguntas has acertado y
cuántas has fallado si cada respuesta correcta vale 0´25 puntos y por cada respuesta errónea se
resta 0´05 puntos?
x = número de preguntas que has acertado
y = número de preguntas que has fallado
x + y = 40
0´25x – 0´05y = 7
0´25
–1
0´25x + 0´25y = 10
x + 10 = 40
–0´25x + 0´05y = –7
x = 40 – 10
0´30y = 3
x = 30 acertadas
3
y = ––––
0´30
y = 10 falladas
Llamamos x e y a lo que se pide calcular.
Con el dato de las 40 preguntas se escribe una ecuación.
Con las puntuaciones se escribe otra ecuación.
Todas las respuestas correctas valen 0´25·x
y todas las incorrectas restan 0´05·y
Se resuelve el sistema por cualquier método. Por ejemplo por reducción.
Volver al menú
Siguiente