Download Ejemplos 1. Cinemática de una Partícula
Document related concepts
no text concepts found
Transcript
Ejemplos 1. Cinemática de una Partícula 1.1. Diversos Sistemas Coordenadas 1.1A.* La velocidad periférica de los dientes de una hoja de sierra circular (diámetro 250mm) es de 45m/s cuando se apaga el motor y, la velocidad de los dientes decrece a un ritmo constante, hasta la parada al cabo de 9 segundos. Hallar el instante en que la aceleración total de los dientes es 40m/s2. Respuesta: t = 8,55segs • Aplique una de las ecuaciones cinemáticas para el caso que la aceleración es constante, para encontrar la aceleración tangencial antes que se apague el motor. • Aplique el teorema de Pitágoras para encontrar la aceleración normal en el mismo instante. • Determine la velocidad en el mismo instante. • De nuevo aplique una ecuación de cinemática con aceleración constante para determinar el tiempo cuando la aceleración total es 40m/s2. 1.1B.** Una partícula se está moviendo a lo largo de una trayectoria parabólica dado por la ecuación y = 2 x en el punto A, la partícula tiene una rapidez de 10m/s y la razón de variación de la rapidez a lo largo de la trayectoria es 10m/s2. ¿Determine el vector de aceleración de la partícula en ese punto? y 4m A y=2 x 4m x r Respuesta: a = 10,95 î + 0,47 ĵ m/s Ejemplos 1. Cinemática de una Partícula • Del formulario la ecuación para la aceleración en coordenadas intrínsecas es: r dv v2 a= ê t + ê n dt ρ • Determine la dirección de ê t derivando la función de la trayectoria ( tgα = tangente a la trayectoria Figura 1.i)) y dy (ver dx dx α dy ê t ê n x Figura 1.i • Determine la dirección de ên girando ê t 90º. ( ) ( ) ( ) Ejemplo (de la Figura 1.i): ê t = cos α î + senα − ĵ ; ê n = senα − î + cos α − ĵ (acuérdese que la componente normal siempre apunta hacia el centro de curvatura de la trayectoria). • Determine el radio de curvatura de la trayectoria ρ de la formula del Formulario. 1.1C.* El perno P situado al extremo de una barra telescópica fija se desliza a lo largo de la trayectoria parabólica fija y2 = 40x (x en mm). La coordenada y de P varía con el tiempo t (segs), según y = 4t2+6t (mm), cuando y = 30mm, calcule: a) el vector de velocidad de P; b) el vector de aceleración de P. y y 2 = 40 x P x r r Respuesta: a) v = 34,1î + 22,7 ĵ mm/s b) a = 37,8 î + 8 ĵ mm/s 2 • Con las dos ecuaciones dadas en el anunciado se puede determinar la componente de posición en x en términos de t. • Derivando con respecto al tiempo se encuentra la velocidad y aceleración. 64 Ejemplos 1. Cinemática de una Partícula 1.1D.* El pasador se mueve por una trayectoria curva determinada por los movimientos de las ranuras A y B. En el instante mostrado A tiene una velocidad de 20cm/s y una aceleración de 5cm/s2, ambas hacia la derecha, mientras B tiene una velocidad de 70cm/s hacía abajo y una aceleración de 10cm/s2 hacía arriba. Determine el radio de curvatura de la trayectoria en ese momento. P B A Respuesta: ρ = 701,57 cm • Define la velocidad en coordenadas rectangulares. • Encuentre el ángulo de la velocidad, defina el vector unitario ê t y girarlo 90º, como ejemplo B, para encontrar ê n . • Iguale la aceleración en coordenadas rectangulares con la ecuación para las componentes intrínsecas, expresando ê t y ê n en coordenadas rectangulares. 1.1E.** El brazo OB gira en el sentido horario con velocidad angular constante ωo = 5rad/s. Determine la aceleración angular α de la barra BD que desliza por el collar pivoteado en C cuando θ = 90°. B 250mm θ C O D 600mm Respuesta: αDB = 6,2rad/s2 • Se formulan dos ecuaciones para la velocidad de B en términos de coordenadas polares con ê r y ê θ expresados en î y ĵ . Una ecuación con su polo en O y la otra en C. • Se igualan las ecuaciones para determinar las incógnitas. • Se realiza lo mismo con la aceleración. 65 Ejemplos 1. Cinemática de una Partícula 1.1F.** El motor ubicado en D desenrolla el cable BCD con una rapidez constante de 0,8m/s. Determinar la velocidad del extremo B de la barra pivoteada AB cuando R = 4m. Desprecie el tamaño de la polea en C. 7m C θ A R 4m 0,8m/s B D ( ) ( ) r Respuesta: v B = 0,45 − î + 0,82 − ĵ • Determine la velocidad de B con coordenadas polares (en î y ĵ ) con polo en C. Incógnita: θ& . • Determine la velocidad de B con coordenadas polares, (en î y ĵ ) (o con cuerpos rígidos) con polo en A. Incógnita: velocidad angular de la barra AB. 1.1G.** La rotación del brazo OA está gobernado por la pieza ranurada. Si ésta tiene una aceleración de 6m/s2 y una velocidad de 0,6m/s, ambas hacia abajo en el instante en que θ = 30°, determine la aceleración angular correspondiente. 5cm A θ 15cm 0 Repuesta: &θ& = 31 rad / s 2 • La trayectoria de movimiento del punto A es un círculo alrededor del punto O (ver Figura 1.ii). • Se ve que la velocidad de A tiene dos componentes rectangulares en − î y − ĵ . La componente vertical tiene que tener la misma magnitud que pieza ranurada. 66 Ejemplos 1. Cinemática de una Partícula • Sabiendo la dirección de la velocidad de A y la magnitud de una componente determine la velocidad total. • Del mismo modo y usando coordenadas intrínsecas se puede determinar la aceleración. • Formule ecuaciones para la velocidad y aceleración de A desde O para encontrar la velocidad y aceleración angular de la barra. r vA A ên θ θ ê t 0 Figura 1.ii 1.1H.*** El brazo ranurado de longitud R está pivoteado en O y lleva en su interior la corredora C. La posición de C dentro de la ranura se controla mediante una cuerda que se mantiene tensa y fija en D. El brazo rota en sentido antihorario con velocidad angular constante ω = 4rad/s. La longitud de la cuerda CBD = R (r = 0 cuando θ = 0). Determine la magnitud de la aceleración de C cuando θ = 30°. R = 375mm. B R cuerda r C O θ D R Respuesta: a = 6667,3mm/s2 • Se aplica la ecuación para la velocidad y aceleración en coordenadas polares con el polo en O. 67 Ejemplos 1. Cinemática de una Partícula • Se tiene que definir r en términos de θ para poder derivarlo con respecto al tiempo usando la regla de la cadena para encontrar r& y &r& . Se puede determinar una relación entre r y θ desde la Figura 1.iii R r θ R Figura1.iii 1.2. Movimiento Relativo 1.2A.* En la figura la velocidad y aceleración del bote respecto al sistema coordenado fijo a la tierra es 15m/s y 10m/s2 respectivamente. La longitud de la cuerda de remolque es de 20m. El ángulo θ es de 30º y aumenta en forma constante a razón de 10rad/s. Determine la velocidad y aceleración absoluta del esquiador. Y 45º X θ r r Respuesta: v ESQ = 183,8 î + 110,6 ĵ , a ESQ = 992,93( − î ) + 1739,07 ĵ • • Los ejes móviles r en rel boter están en traslación y, por lo tanto, se aplica las ecuaciones: v ESQ = v BOTE + v ESQ / BOTE r r r a ESQ = aBOTE + aESQ / BOTE r No se olvide la componente normal de la aceleración relativa a ESQ / BOTE . 68 Ejemplos 1. Cinemática de una Partícula 1.2B.*** La partícula P está moviendo en el sentido antihorario dentro de la ranura elíptica con una velocidad constante de 200mm/s mientras el bloque A se mueve hacia arriba con una velocidad vA de 120mm/s y una aceleración aA de 250mm/s2. Si θ = 30º, hallar la velocidad y aceleración absoluta de P con respecto a los ejes mostrados. La x2 y2 ecuación para un elipse es: 2 + 2 = 1 donde a = 1m y b = 0,5m a b r vA r aA P a θ Y b A X 35º r Respuesta: a P = 212 î + 108 ĵ mm/s 2 • Los ejes móviles deben estar en el centro de la elipse trasladándose con el bloque. • La velocidad. Se sabe: r a. La dirección y magnitud de la velocidad ( v A ) del bloque A. b. La magnitud de la velocidad (vP/A) de la partícula P con respecto al bloque. r r r c. Que la velocidad absoluta de la partícula v P = v A + v P / A (ver Figura 1.iv). y r vP vP/A = 0,2m/s α vA = 0,12m/s 35º x Figura 1.iv • Determine el ángulo α derivando la función de la trayectoria. La aceleración. Se sabe: r a. La dirección y magnitud de la aceleración ( a A ) del bloque A. b. La magnitud de la velocidad relativa (vP/A) es constante y, por lo tanto, dvP/A/dt = 0. • Determine el radio de curvatura de la elipse (ρ) para encontrar la magnitud de la aceleración normal relativa y girar la dirección de la velocidad relativa 90º para encontrar la dirección normal. 69 Ejemplos 1. Cinemática de una Partícula 1.2C.** El pasador P se mueve a lo largo de una trayectoria curva y es controlado por los movimientos de los eslabones ranurados A y B. Determine el radio de curvatura (ρ) del la trayectoria en el instante mostrado. (Ver Animación 1) B P vB = 3m/s 2 aB= 30m/s 1 1 A vA = 5m/s 2 aA= 20m/s Respuesta: ρ = 9,3m • Formule dos ecuaciones para la velocidad de la partícula, con respecto a A y B. • Repita para la aceleración de P. • Aplique los conocimientos de las coordenadas intrínsecas para determinar ρ. 1.2D.** La caja C sube al bajar la rueda en A con velocidad constante de 2m/s por una guía vertical. Cuando la rueda está en B la caja está en el piso. Encuentre la velocidad de C como función de s. Descarte el tamaño de la polea. 4m D B 4m C A s Respuesta: v C = vA = 2m/s − 2 8s + s 2 (s + 4) • Encuentre una ecuación para la longitud de la cuerda en términos de la posición de C y A con respecto al eje DB. Derívela. • Encuentre una expresión para la posición de C en términos de s y reemplace. 70 Ejemplos 1. Cinemática de una Partícula 1.2E.** En el instante mostrado en la figura, la partícula P se mueve con una velocidad s& hacia arriba y una aceleración &s& hacia abajo, ambas con respecto al disco. Determinar la aceleración de P cuando se encuentra a una distancia b/2 del centro del disco. (Ver Animación 4) ω1 = constante a D ω2 = constante C ω2 b P P A Respuesta:, • • • Sistema fijo en C, sistema móvil en D. r r Se determinen r&o y &r&o con coordenadas polares (movimiento circular) o cuerpos rígidos. r r Se determinan ρ& y &ρ& con polares con el polo en C. 1.2F.** La barra semicircular de radio 10m gira con velocidad angular constante horario igual a 5 rad/s alrededor del pivote A y está unida mediante un pasador C, a una barra recta de longitud 12,5m, la cual gira con respecto al rpivote B. Determinar para la posición mostrada en la figura: a) la velocidad de C ( v c ), b) velocidad angular de la r barra BC ( ωBC ), c) la aceleración de C ( a c ) y d) la aceleración angular de la barra ( α BC ). C 12,5m 10m 30º B A 7,5m Respuesta: ( ) • ( ) r a) v C = 34,89 î + 26,17 − ĵ , b) ωBC = 3,49rad / s , r c) a C = 145,91 − î + 80,76( − ĵ ) , d) α BC = −5,46rad / s Se formulan ecuaciones para la velocidad y la aceleración de C con el sistema fijo y móvil en A (ver Figura 1.v). Quedan como incógnitas; ρ& y &ρ& t . 71 Ejemplos 1. Cinemática de una Partícula r ρ& C &ρr& t &ρr& n 60º ê n 30º A ê t Figura 1.v • Se desarrollan ecuaciones para la misma velocidad y aceleración, ahora considerando el movimiento de C desde el punto B (ver Figura 1.vi). C θ r aCn 12,5m 10m r r v c ,aC t θ B 7,5m Figura 1.vi 1.2G.*** La leva forma una cardiole definida por r = b − c cos θ (b > c) . El brazo OB gira en sentido contrario al de las agujas del reloj a una velocidad constante de 20rpm, y la leva gira en sentido opuesto a la velocidad constante de 40rpm, determine la aceleración del centro del rodillo A cuando el brazo y leva se hallan en posición relativa, tal que θ = 90º. Las dimensiones de la curva son b = 10cm y c = 5cm. B 20 rpm r A θ 0 40 rpm Respuesta: a p = 140cm / s 2 • Los ejes móviles y fijos coinciden en 0. El sistema móvil gira con la leva. • Exprese ρ& y &ρ& en coordenadas polares. • Se encuentran r& y &r& derivando la expresión para la cardiole con respecto al tiempo. • Ojo con θ& . 72