Download enero-abril vol. 23,n.º 1
Document related concepts
no text concepts found
Transcript
ENERO-ABRIL VOL. 23, N.º 1 2 0 1 6 La grasa de la dieta y el riesgo cardiovascular R. Carmena Rodríguez Water mineralization and its importance for health C. Ferreira-Pêgo, N. Babio, F. Maraver Eyzaguirre, I. Vitoria Miñana, J. Salas-Salvadó La publicidad alimentaria dirigida a menores en España M. J. Bosqued Estefanía, L. López Jurado, Á. Moya Geromini, M. Á. Royo Bordonada EQUIPO DE REDACCIÓN: Presidente: Prof. Luis Moreno Presidente de Honor: Prof. M. Serrano Ríos Comité Editorial: Prof. M. Foz Prof. M. Juárez Dra. C. López-Nomdedeu Prof. J.M. Ribera Comité Asesor: Dr. J.P. Andorinha Prof. M. Bueno Prof. J. Cabo Prof. R. Carmena Dña. P. Cervera Prof. J. Salas Prof. F. Guarner Prof. M.C. Vidal D. G. Alegre © Copyright 2016. Instituto Danone. C/. Buenos Aires, 21. 08029 Barcelona. Telf. 93 419 51 78. www.institutodanone.es Publicación trimestral. Reservados todos los derechos. Ninguna parte de esta publicación puede ser reproducida, transmitida en ninguna forma o medio alguno, electrónico o mecánico, incluyendo fotocopias, grabaciones o cualquier sistema de recuperación de almacenaje, información, sin el permiso por escrito del titular del Copyright. Publicación autorizada por el Ministerio de Sanidad como Soporte Válido, Ref. S.V. 94028 R. ISSN: 1136-4815 Depósito Legal: M-10938-1994 Edita: ARÁN Ediciones, S.L. C/ Castelló, 128, 1.º. Tel. 91 782 00 35 - Fax 91 561 57 87 - 28006 MADRID e-mail: suscripc@grupoaran.com - http.//www.grupoaran.com S U VOL. 23 M A R ENERO-ABRIL 2016 I O N.º 1 Revisiones La grasa de la dieta y el riesgo cardiovascular R. Carmena Catedrático Emérito de Medicina. Facultad de Medicina y Odontología. Universidad de Valencia1 Water mineralization and its importance for health C. Ferreira-Pêgo1,2, N. Babio1,2, F. Maraver Eyzaguirre3, I. Vitoria Miñana4, J. Salas-Salvadó1,2 1 Human Nutrition Unit. Hospital Universitari de Sant Joan de Reus. Faculty of Medicine and Health Sciences. Iispv (Institut D’investigació Sanitària Pere Virgili). Biochemistry Biotechnology Department. Universitat Rovira i Virgili. Reus. 2Ciberobn (Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición). Institute of Health Carlos III. Madrid. 3Professional School of Medical Hydrology. Faculty Of Medicine, Complutense University, Madrid. 4Nutrition and Metabolopathies Unit. Hospital La Fe. Valencia4 La publicidad alimentaria dirigida a menores en España M. J. Bosqued Estefanía, L. López Jurado, Á. Moya Geromini, M. Á. Royo Bordonada Escuela Nacional de Sanidad. Instituto de Salud Carlos III. Madrid19 1136-4815/23/1-3 Alimentacion, Nutricion y Salud Copyright © 2016 Instituto Danone Alim. Nutri. Salud Vol. 23, N.º 1, pp. 1-3, 2016 La grasa de la dieta y el riesgo cardiovascular R. Carmena Rodríguez CATEDRÁTICO EMÉRITO DE MEDICINA. FACULTAD DE MEDICINA Y ODONTOLOGÍA. UNIVERSIDAD DE VALENCIA Nuestros conocimientos sobre el papel que la grasa desempeña en la dieta, especialmente en lo referente a su relación con las enfermedades cardiovasculares, se han ido ampliando y modificando a la luz de recientes descubri mientos en nutrición. Desde mediados del pasado siglo, los trabajos de Keys, Anderson y Grande (1) en la Universidad de Minnesota y los del grupo de Hegsted en Harvard (2) dejaron establecido que la ingesta de grasa saturada con tribuye significativamente a elevar el colesterol plasmático total (CT), el colesterol de las lipoproteínas de baja densi dad (LDL-C) y la incidencia de accidentes coronarios is quémicos (angina de pecho, infarto de miocardio, muerte súbita). Los ácidos grasos saturados (AGS), láurico (C12), mirístico (C14), y palmítico (C16), quedaron identificados como principales responsables de la elevación del colesterol y del riesgo coronario. Por otra parte, el contenido de colesterol en la dieta influye sobre el colesterol plasmático (LDL-C) de forma muy variable entre unos individuos y otros, dependiendo especialmente de factores genéticos (fenotipo de apoli poproteína E, mutaciones de la proteína NPC1L1, etc.) responsables de la absorción intestinal de colesterol (3). En la especie humana la absorción intestinal del colesterol procedente de la dieta es limitada, aproximadamente el 40%, aunque existen amplias diferencias interindividuales que oscilan del 18 al 60%. Existe un valor umbral y un valor techo de colesterol dietético, situados, aproximadamente, a 100 y 500 mg de consumo diario (4). De ahí que, en conjunto, se considere que el efecto del colesterol de la dieta sobre el colesterol plasmático sea, comparado con lo observado con los AGS, relativamente poco importante. Así ha quedado recogido en las recientes recomendaciones del Departamento de Salud y Agricultura de EE.UU., donde no se fija un límite de contenido dietético en colesterol (5). Durante las últimas décadas del siglo xx, las recomen daciones nutricionales han puesto un énfasis especial en reducir la grasa total de la dieta para disminuir la ingesta de AGS, ya que la mayor parte de la grasa dietética es saturada de origen animal. En ese mismo sentido, se daba por hecho que las dietas bajas en grasa serían también menos calóricas y, de esta manera, contribuirían a atenuar la ganancia ponderal. Sin embargo, lo ocurrido en EE. UU. en los últimos decenios, según datos de la encuesta National Health and Nutrition Examination Survey (6), contradice esta aseveración, ya que, si bien la ingesta de grasa bajó del 37 al 30% de las calorías diarias, la incidencia de obesidad ha ido en aumento en relación con el mayor consumo de hidratos de carbono. Los hallazgos de la investigación nutricional han expe rimentado una significativa expansión en la última década. Dado que la grasa es un importante componente de la dieta, consideramos oportuno analizar y revisar la situación actual de la grasa de la dieta y su relación con la salud. Las grasas de la dieta son una fuente principal de energía y, según su composición química, se clasifican en triglicé ridos o triacilgliceroles (que son las grasas en sentido es tricto), fosfolípidos y colesterol. Los triacilgliceroles son los más abundantes en los alimentos y constituyen el principal componente (98%) de la grasa ingerida. La naturaleza y localización de los AG sobre la molécula de glicerol determi nan su respuesta biológica. Recordemos que los triglicéridos están formados por la unión de una molécula de glicerol con tres ácidos grasos. Los AG pueden ser saturados (AGS, no contienen ningún doble enlace, nC:0) o insaturados, con un doble enlace, AGM (monoinsaturados) o varios (poliinsaturados, AGP). La mayoría de los AG que se encuentran en los alimentos posee una configuración espacial cis. Mucho menos frecuente es la configuración trans (los átomos de hidrógeno se encuentran en el lado opuesto de un doble enlace), que se produce du rante la hidrogenación parcial de aceites vegetales o grasas animales o por fermentación en el estómago (rumen) de los rumiantes. Desde el punto de vista del efecto sobre el colesterol plas mático, no todos los AGS son iguales. Como ya menciona mos, C12:0, C14:0 y C16:0 son los responsables de elevar el CT y el LDL-C, mientras que el ácido esteárico (C18:0), 1 R. CARMENA RODRÍGUEZ también saturado, carece de ese efecto. Los AGM, en los experimentos y ecuaciones propuestas por Keys y Hegsted, fueron considerados neutrales porque no elevaban el coleste rol. La recomendación de estos autores en aquella época fue reducir los AGS y reemplazarlos por poliinsaturados. En las últimas décadas, numerosos experimentos dieté ticos controlados en humanos han ido acumulando prue bas que modifican de forma sustancial las ideas que so bre la grasa de la dieta, el colesterol sanguíneo y el riesgo cardiovascular habían quedado establecidas desde los años cincuenta del siglo pasado. Un cambio importante es el producido con respecto a los AGM, cuyo supuesto efecto neutral ha sido rectificado. Varios autores, entre los que nos encontramos (7,8), han demostrado que las dietas en riquecidas en AGM (fundamentalmente aceite de oliva, con alto contenido en ácido oleico, C18:n9) reducen el LDL-C igual que hacen los AGP, pero además, a diferencia de estos últimos, pueden elevar discretamente el colesterol de las lipoproteínas de alta densidad (HDL). Otra importante innovación es la ocurrida con el consu mo de grasas ricas en AG de configuración trans, anterior mente mencionados. Los AG con configuración espacial trans, aunque sean insaturados, elevan la colesterolemia, ejercen efectos adversos sobre la función endotelial y aumen tan el riesgo de enfermedades cardiovasculares (RCV) más que los AGS. La concentración de estos AG se encuentra de manera natural en la carne de rumiantes, en los produc tos lácteos y en alimentos elaborados con aceites vegetales parcialmente hidrogenados, como las margarinas, patatas fritas y galletas. Hasta finales del pasado siglo, los aportes de AG trans en la dieta de los países industrializados podía alcanzar cifras elevadas, de hasta 20-30 g/día. En las dos últimas décadas, sin embargo, los avances tecnológicos en la industria alimentaria han permitido elaborar productos con un contenido muy bajo o prácticamente nulo en este tipo de AG. De hecho, las margarinas consumidas en España ya no contienen aceites parcialmente hidrogenados. Un estu dio reciente del Centro Nacional de Alimentación (Agencia Española de Consumo, Seguridad Alimentaria y Nutrición) determinó el perfil de AG de un amplio grupo de alimentos consumidos habitualmente y se detectaron contenidos de AG trans inferiores al 1% del total de AG. ALIM. NUTRI. SALUD de aporte diario de energía, con una reducción de hasta el 7% en el caso de las grasas saturadas. Sin embargo, varios estudios (Women’s Health Initiative (9), con restricción del consumo de grasa < 20% de las calorías diarias, o el estudio Look AHEAD (10), con menos del 28% de ingesta diaria de grasa) han mostrado resultados decepcionantes en cuanto a la reducción de enfermedades cardiovasculares se refiere. Se ha reafirmado el concepto de que una dieta baja en grasa y, por tanto, rica en hidratos de carbono, es inútil para reducir el RCV. En el mismo sentido, algunos metaanálisis han puesto en duda esas recomendaciones al demostrar que el consumo de grasas saturadas no guardaba relación con la incidencia de en fermedad coronaria isquémica y que el enfoque reduccionista clásico no parece válido cuando se aplica a la nutrición, dadas las complejas y numerosas interacciones entre los nutrientes una vez ingeridos. Los alimentos tienen una composición muy diversa y considerar únicamente un macronutriente (AGS, por ejemplo) puede conducir a interpretaciones erróneas de los resultados. Datos recientes apoyan la conclusión de que dis tintos AGS tienen asociaciones diferentes con el RCV y que al atribuir a las grasas saturadas en conjunto efectos nocivos para la salud, como se ha venido haciendo tradicionalmente, se está ignorando que sus asociaciones heterogéneas con otros nutrientes pueden llegar a resultar beneficiosas. Numerosos investigadores en este campo recomiendan adoptar una visión más holística de la nutrición, recordando que nuestros organismos han evolucionado sobre la base de ingerir mezclas de alimentos y no macronutrientes aislados. El enfoque de la investigación nutricional sobre nutrientes aislados ha llevado a una contraproducente confusión. En una reciente monografía, Campbell y Jacobson (11) sostie nen que “la creencia de que podemos investigar los efectos de un nutriente de forma aislada, sin tener en cuenta sus potenciales modificaciones por otros factores químicos, roza la temeridad”. Dentro del amplio grupo de AGP, los n-6 se encuentran en los aceites de semillas como girasol, maíz o soja, frutos secos y margarinas y su principal representante es el ácido linoleico (C18:2n-6). Cuando sustituyen a dietas ricas en AGS o en hidratos de carbono, los AGP n-6, como de mostraron los trabajos de Keys y cols. (1), disminuyen la colesterolemia y su ingesta se considera beneficiosa para reducir el RCV. En este mismo sentido, los AGP n-3, de cadena larga y origen marino, como el eicosapentaenoi co (C20:5n-3) y el docosahexaenoico (C22:6-n3), ejercen también una acción cardioprotectora. Su principal fuente en la alimentación son los pescados ricos en grasa (> 5%), como el atún, salmón, sardina, caballa, boquerón y anchoa. Por tanto, las recomendaciones dietéticas deberían ba sarse, a partir de ahora, en el consumo de determinados alimentos considerados cardiosaludables, abandonando el enfoque restrictivo sobre macronutrientes concretos. Los positivos resultados del estudio PREDIMED (12) han de mostrado los beneficios de una dieta mediterránea, de alto contenido en grasa (más del 35% de la energía diaria) su plementada con aceite de oliva extra virgen o con frutos secos, para la prevención de enfermedades cardiovascula res, síndrome metabólico y diabetes de tipo 2. Como con secuencia, parece lógico que, a partir de ahora, las guías nutricionales deberán poner más énfasis en recomendar la ingesta de alimentos típicamente consumidos en la dieta mediterránea, incluyendo aceite de oliva, pescado, legum bres, hidratos de carbono complejos, verduras, fruta, frutos secos, etc., que en fijar puntos de corte excesivamente res trictivos sobre el consumo de determinados macronutrien tes, con excepción de los AG trans, cuya ingesta no debe superar el 1% de la energía total. A la luz de nuestros conocimientos actuales, las recomen daciones sobre el contenido de grasa de la dieta, basadas en las investigaciones de Keys, Hegsted y otros, parecen ex cesivamente restrictivas, ya que se situaban entre 20-25% Actualmente no existen dudas sobre el hecho de que la calidad de la grasa de la dieta es mucho más importante que su cantidad. Diferentes AG derivados de distintos alimentos no producen necesariamente el mismo efecto biológico, ya que 2 Vol. 23, N.º 1, 2016 la composición global del alimento del que proceden modifica su efecto. La leche es un alimento complejo, con gran varie dad de nutrientes, y el cambio de posición con respecto a la grasa de la leche y los productos lácteos constituye un claro ejemplo. La grasa láctea contiene un 60-70% de AGS, 25% de AGM y 5% de AGP, con 1-4% de AG de configuración trans (13). Un hallazgo importante ha sido la constatación de que la ingesta de los AGS de cadena impar de átomos de car bono, como el ácido pentadecanoico (C15:00) y el heptadeca noico (C17:00), presentes en la leche y sus derivados, ejerce un efecto protector frente al riesgo de cardiopatía isquémica o de diabetes de tipo 2 (14). Un reciente estudio, utilizando como biomarcadores de la ingesta láctea a esos dos AGS y al ácido trans palmitoleico (C16:1n-7), no ha demostrado asociación entre el consumo de productos lácteos y el riesgo cardiovascular (15). Parece posible que el contenido de estos AGS de cadena impar en la grasa de la leche contribuya a reducir la resistencia a la insulina, el riesgo cardiovascular y la diabetes de tipo 2 y que estos beneficios se extiendan también al consumo de quesos y de yogurt (16). Numerosos estudios epidemiológicos no han aportado pruebas que apoyen las re comendaciones de limitar el consumo de lácteos para prevenir las enfermedades cardiovasculares y la diabetes de tipo 2 (17). La falta de asociación entre el consumo de productos lácteos y las enfermedades cardiovasculares o diabetes obliga a mo dificar la imagen nutricional, tradicionalmente adversa, de la grasa láctea sobre dichos procesos (18). En resumen, el enfoque estrictamente reduccionista de la nutrición puede conducir a silogismos erróneos, como ha ocurrido con respecto al riesgo cardiovascular y el contenido de grasa de la dieta, sometido a restricciones que hoy care cen de validez (19). Es cierto que la grasa de la dieta tiene una profunda influencia sobre la salud, especialmente en el campo de las enfermedades cardiovasculares, sin olvidar que la calidad de la grasa es más importante que su cantidad. Pero no todas las grasas saturadas poseen el mismo efecto sobre los valores de la colesterolemia y el posible riesgo cardiovascular; son los AGS con cadena de 12, 14 y 16 átomos de carbono los principales responsables de elevar el LDL-C. Además, exis ten subtipos de AGS de cadena impar como los que están pre sentes en la leche, cuyo consumo no eleva la colesterolemia ni el riesgo cardiovascular. En un reciente consenso español (20) sobre este tema, se concluye que las dietas altas en grasa total pueden ser beneficiosas para la salud siempre y cuando la mayor parte de la grasa sea monoinsaturada y poliinsaturada. Por tanto, puede consumirse una dieta rica en grasa en vez de alta en carbohidratos sin ningún peligro para la salud y con posibilidad de mejorarla, siempre que se trate de grasas insaturadas de procedencia vegetal, tomando en consideración lo anteriormente mencionado sobre los beneficios aportados por la grasa de la leche y derivados● CORRESPONDENCIA: Rafael Carmena Rodríguez Universidad de Valencia Facultad de Medicina y Odontología Av. de Blasco Ibáñez, 15, 46010 Valencia Rafael.Carmena@UV.es LA GRASA DE LA DIETA Y EL RIESGO CARDIOVASCULAR BIBLIOGRAFÍA 1. Keys A, Anderson TJ, Grande F. Serum cholesterol response to changes in the diet. Particular saturated fatty acids in the diet. Metabolism 1965;14:776-86. 2. Hegsted DM, McGandy RB, Myers ML, et al. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 1965;17:281-91. 3. Myocardial Infarction Genetics Consortium Investigators. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med 2014;371:2072-82. 4. Carmena R, Ordovas JM. Tratamiento dietético de las hiperlipoproteinemias. En: Hiperlipemias: clínica y tratamiento. R Carmena, JM Ordovás, editores. Doyma, Barcelona; 1999. p. 203-15. 5. 2015 Dietary Guidelines Advisory Committee. Advisory report to the Secretary of Health and Human Services and Secretary of Agriculture. Published February 2015. http://www.healthg. gov/dietaryguidelines/2015-scientific-report/PDFs 6. National Health and Nutrition Examination Survey: questionnaires, datasets, and related documentation. Atlanta: Centers for Disease Control and Prevention. 2011, at http://www.cdc. gov/nchs/nhanes/nhanes 7. Ascaso JF, Carmena R. Importancia de la dislipidemia en la enfermedad cardiovascular: un punto de vista. Clin Invest Arterioscler 2015;27:301-8. 8. Carmena R, Ascaso JF, Camejo G, et al. Effect of olive and sunflower oils on low density lipoprotein level, composition, size, oxidation and interaction with arterial proteoglycans. Atherosclerosis 1996;125:243-55. 9. Howard BV, Van Horn L, Hsia J, et al. The Women’s Health Initiative Randomized Controlled Dietary Modification Trial. Low-fat dietary patterns and risk of cardiovascular disease. JAMA 2006;295:655-66. 10. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Eng J Med 2013;369:145-54. 11. Campbell TC, Jacobson H. Whole; rethinking the science of nutrition. BenBella Books Inc: Dallas, Texas, USA; 2013. 12. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Eng J Med 2013;368:1279-90. 13. Calvo MV, Castro-Gómez MP, García-Serrano A, et al. Grasa láctea: una fuente natural de compuestos bioactivos. Alim Nutr Salud 2014;21:57-63. 14. Astrup A. A changing view on saturated fatty acids and dairy: from enemy to friend. Am J Clin Nutr 2014;100:1407-8. 15. Yakoob MY, Shi P, Hu F et al. Circulating biomarkers of dairy fat and risk of incident stroke among US men and women in two large prospective cohorts. Am J Clin Nutr 2014;100:1437-47. 16. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2011;93:158-71. 17. Forouhi NG, Koulman A, Sharp SJ et al. Differences in the prospective association between individual plasma phospholipids saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol 2014; 2:810-18. 18. Fontecha J, Rodríguez-Alcalá LM, Calvo MV et al. Bioactive milk lipids. Current Nutr and Food Sci 2011;7:155-9. 19. Jacobs DR, Tapsell LC. What an anticardiovascular diet should be in 2015. Curr Opin Lipidol 2015;26:270-5. 20. Ros E, López-Miranda J, Picó C et al. Consenso sobre las grasas y aceites en la alimentación de la población española adulta; postura de la Federación Española de Sociedades de Alimentación, Nutrición y Dietética (FESNAD). Nutr Hosp 2015;32:435-77. 3 1136-4815/23/4-18 Alimentacion, Nutricion y Salud Copyright © 2016 Instituto Danone Alim. Nutri. Salud Vol. 23, N.º 1, pp. 4-18, 2016 Water mineralization and its importance for health C. Ferreira-Pêgo1,2, N. Babio1,2, F. Maraver Eyzaguirre3, I. Vitoria Miñana4, J. Salas-Salvadó1,2 HUMAN NUTRITION UNIT. HOSPITAL UNIVERSITARI DE SANT JOAN DE REUS. FACULTY OF MEDICINE AND HEALTH SCIENCES. IISPV (INSTITUT D’INVESTIGACIÓ SANITÀRIA PERE VIRGILI). BIOCHEMISTRY BIOTECHNOLOGY DEPARTMENT. UNIVERSITAT ROVIRA I VIRGILI. REUS. 2CIBEROBN (CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED FISIOPATOLOGÍA DE LA OBESIDAD Y NUTRICIÓN). INSTITUTE OF HEALTH CARLOS III. MADRID. 3PROFESSIONAL SCHOOL OF MEDICAL HYDROLOGY. FACULTY OF MEDICINE, COMPLUTENSE UNIVERSITY, MADRID. 4 NUTRITION AND METABOLOPATHIES UNIT. HOSPITAL LA FE. VALENCIA 1 RESUMEN E ABSTRACT W l agua es esencial para la vida, ya que participa en el metabolismo de todos los seres vivos. En los últimos años el consumo de agua del grifo ha disminuido y el consumo de agua embotellada ha aumentado a escala mundial. La composición mineral del agua mineral natural es conocida y constante durante el año, y sus efectos potenciales sobre la salud deben ser determinados. Solamente el magnesio, calcio y sodio están presentes en el agua en cantidades suficientes para complementar la dieta. Dado que la biodisponibilidad de calcio y magnesio en el agua es comparable a la de otros alimentos, el consumo de agua puede contribuir a la ingesta diaria de estos minerales. Por lo tanto, incluir el agua mineral en la dieta puede ser una forma válida de complementar la ingesta de calcio y magnesio, y de esta manera cubrir las recomendaciones dietéticas diarias de estos nutrientes. ater is essential for life, participating in the metabolism of all the living organisms. In recent years, the consumption of tap water has decreased and the consumption of bottled water has increased worldwide. The mineral quality and composition of natural mineral water is known and constantly over the year, and their potential effects on health must be determined. Only magnesium, calcium and sodium are present in water in sufficient quantities to complement the diet. Given that the bioavailability of calcium and magnesium in water is comparable to that of other foods, the consumption of water can contribute to the daily intake of these minerals. Therefore, including natural mineral water in the diet may be a valid way of complementing calcium and magnesium intake, and complying with the daily dietetic recommendations of these nutrients. Palabras clave: Agua. Mineralización. Calcio. Magnesio. Salud. Key words: Water. Mineralization. Calcium. Magnesium. Health. INTRODUCTION, DEFINITIONS AND TYPES OF WATER In the last two decades, the consumption of tap water has decreased and, at the same time, the consumption of bottled natural mineral water has increased significantly all over the world because of the growing concern that certain water components or contaminants can affect health (1,2). For this reason, the scientific community is taking more interest in studying how the consumption of bottled water can affect health. 4 It is recognized that the main source of minerals is food, however some types of water can be an important source of them contributing to cover recommendations. Water can be regarded both as an essential nutrient for hydration, and also as a food, because it contains several nutrients (calcium, magnesium, sodium, etc.). It cannot accumulate in the body so it must be ingested several times during the day. And depending on its chemical composition and the amount consumed, it can also be a significant source of minerals (3). The quality and composition of tap and bottled waters vary enormously around the world (2-4). Vol. 23, N.º 1, 2016 WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH Of the minerals present in water, only one small group deserves special attention because of their possible effect as a complement to dietary intake. These minerals are essential for health and are mainly magnesium, calcium and sodium (4). Bottled drinking waters have different chemical compositions and can therefore be classified in a variety of ways. Table I shows the classification of bottled natural mineral waters in Spain according to Royal Decree 1798/2010, BOE no. 16, of 19 January 2011 (5). According to the definition of the World Health Organization (WHO), very weakly mineralized water is practically or completely free of dissolved minerals, sometimes as a result of distillation, deionization, membrane filtration, electrodialysis or some other technology (4). At the other extreme, highly mineralized water is generally defined as water that contains a high concentration of calcium and magnesium ions and bicarbonates. The most common sources of hardness in water are the minerals found in the aquifer: limestone, which is the source of calcium, and dolomite, which is the source of magnesium. Nevertheless, hardness can be caused by such other dissolved metals as aluminum, barium, strontium, iron, zinc and manganese. Normally, monovalent ions such as sodium and potassium do not determine the hardness of water (6). However, these definitions cannot be applied to natural mineral waters, since Royal Decree 1798/2010 states that the mineralization of this type of water cannot be modified artificially. In this regard, natural mineral waters can be subject only to the following operations: • Separation of unstable natural elements, such as sulfur and iron compounds, by filtration or decantation, preceded in each case by oxygenation, as long as the composition of those constituents of the water that provide it with its essential properties is not modified. • Separation of iron, manganese and sulfur compounds, and arsenic, in some natural and spring mineral waters by ozone-enriched air, as long as the composition of those constituents of the water that provide it with its essential properties is not modified and the handler adopts all the measures necessary to guarantee the effectiveness and innocuity of the process, and notifies the health authorities so that appropriate control can be exercised. At present, there are considerable variations in the mineral content of the bottled waters available in Spain, so it is essential to understand the potential effects that these minerals can have on an individual’s health (1). This information is absolutely necessary if the benefits or risks of certain bottled waters are to be determined. Drinking water is often subdivided into bottled drinking water and water for human consumption or tap water. According to Royal Decree 140/2003, of 7 February, which establishes the health criteria for the quality of water for human consumption (8), drinking water is regarded as: • All water, whether in its original state or after treatment, used for drinking, cooking, preparing food, personal hygiene and other household purposes, whatever its origin and independently of whether it is supplied to the consumer by public or private distribution networks, cisterns and/or public or private deposits. • All water used in the food industry for purposes of making, treating, conserving or commercializing products or substances for human consumption, as well as that used for cleaning surfaces, objects and materials that may come into contact with foodstuffs. • All water supplied for human consumption as part of a commercial or public activity, regardless of the mean daily volume supplied. Water for human consumption can come from any source, as long as it does not involve a risk to the health of the people it is supplied to (8). Normally this sort of water comes from rivers, reservoirs, desalination plants or even wells. Its chemical and mineral composition varies over time and can depend on its source and any potabilization treatments it is subject to. Bottled water, on the other hand, can be divided into three types: natural mineral water, spring water and prepared water. Natural mineral water is microbiologically healthy water which comes from an underground stratum or deposit. It comes to the surface in the form of a spring or can be collected artificially by means of a probe, a well, a pit or gallery or any combination of these. It can be clearly distinguished from other ordinary drinking water because of (5): • Separation of fluoride by activated alumina in natural mineral waters and spring waters (5,7). • its content of minerals, dietary elements and other components and, on occasions, particular effects it may have, TABLE I SPANISH NATURAL MINERAL WATER CLASSIFICATION Reference Criteria for making the references based on content Very low mineralized water Up to 50 mg/L of dry residue Low mineralized water Up to 500 mg/L of dry residue Medium mineralized water Between 500 mg/L and 1,500 mg/L of dry residue Highly mineralized water More than 1,500 mg/L of dry residue 5 C. FERREIRA-PÊGO, ET AL. • its chemical constancy and, • its original purity, given the fact that it is from an underground source that has provided natural protection against all risk of contamination. As has been mentioned in the introduction to this review, natural mineral waters are classified according to their mineral composition: very low mineralization, low mineralization, medium mineralization and high mineralization. This classification is specific to natural mineral waters and must not be used to define or classify other types of water, like tap water. It is important to highlight that in Spain, the majority of the Natural Mineral Waters consumed and sold presents a low mineralization. Spring waters flow spontaneously from underground sources to the surface or are collected. They are naturally pure and can therefore be consumed. They remain pure because, being from an underground source, they are naturally protected by the aquifer from any risk of contamination (5). What is more, constancy of the chemical and mineral composition of these waters cannot be guaranteed. Prepared drinking water is that which comes from a fountain or is collected, and is then subject to treatment so that it can be drunk. It is this treatment that means it can no longer be classified – if it ever was – as spring water or natural mineral water, and can never again opt to be classified as such (9). Just like tap water, its chemical and mineral composition is not always constant, which means that it is not always known and well described. Finally, water can be bottled and distributed to households for public consumption in special circumstances, with the sole purpose of compensating for temporary deficiencies in the general public water supply (9). The mineral composition of drinking water can depend heavily on local geological conditions. WATER RECOMMENDATIONS Water plays a crucial role for life and health, and is also fundamental if human tissues are to function properly (10). According to the European Food Safety Agency (EFSA), the recommended daily intake of water is the minimum amount required to balance the loss of fluids in the human body (11). The water ingested daily comes from both different types of drink and food. At present it is thought that food provides approximately 20% of the daily water needs and drinks the remaining 80%. The EFSA set the daily recommendations for water intake for Europeans at 2.5 liters for men and 2.0 liters for women over 14 years of age, from both food and drink. If only drinks are to be considered, the recommended amount of water would be 2.0 liters/day for men and 1.6 liters/ day for women (10). These recommendations need to be 6 ALIM. NUTRI. SALUD increased by 300 mL/day and 700 mL/day for pregnant and lactating women, respectively. These amounts of water would cover the needs related to exercise, sweating and solute overload, all of which increase the need for liquid. Exposure to cold does not modify the need for water, but exposure to heat and stress increases it (12). MINERAL CONTENT IN WATER: CONTRIBUTION TO WATER RECOMMENDATIONS DIFFERENCES IN THE MINERAL COMPOSITION OF WATER Several authors have described considerable differences in the mineral composition of bottled water and tap water (2,4). There are also considerable differences in the mineral content of tap water between countries and even within the same country (2). Table II shows the results (expressed as median [P25, P75] and mean) of an analysis of 75 different types of natural mineral waters on sale in Spain (data obtained from labels, the website of the respective brands or the website www.aguainfant.com). Francisco Maraver, a lecturer at the Complutense University in Madrid, and Isidro Vitoria Miñana, from the Hospital La Fe (Valencia), analyzed 109 natural mineral waters on sale in Spain (14 of which are carbonated). Samples were analyzed at environment temperature. The results of this analysis expressed as median [25th and 75th percentiles] and (mean) can be seen in table III. As can be seen from the data in tables II and III for waters in Spain, there are considerable variations in the chemical composition of natural mineral waters within the same country. The mean content of magnesium in still natural mineral waters varies from 1.8 to 107.3 mg/L, the content of sodium from 3.6 to 1,740.5 mg/L, and the content of calcium from 3.8 to 399.6 mg/L. Substantial variations in the concentrations of the three most common minerals in natural mineral waters have also been published (1). In their study, these authors reported that the content of magnesium in bottled waters could vary from 0 to 126 mg/L, the content of sodium from 0 to 1,200 mg/L and the content of calcium from 0 to 546 mg/L. These variations may be due to the particular features of each spring (geological profile, residence time and temperature) which determine the specific composition of the water. It should also be remembered that the mineral composition of a spring is constant over time, so the mineral composition of natural mineral water is also always constant. The same cannot be said of tap water since its composition generally varies throughout the year. Vol. 23, N.º 1, 2016 WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH TABLE II CONTENT OF SODIUM, CALCIUM AND MAGNESIUM IN 75 DIFFERENT TYPES OF NATURAL MINERAL WATER ON SALE IN SPAIN Na (mg/L) Ca (mg/L) Mg (mg/L) Very low mineralized water (n = 6) 3.1 [1, 5.6] (3.3) 2.4 [0.8, 4.2] (2.5) 1.7 [0.7, 2.3] (1.6) Low mineralized water (n = 55) 11.7 [5.2, 30] (20.2) 50 [27, 73.7] (51.3) 10.9 [5, 18] (12.3) Medium mineralized water (n = 5)* 39.5 [7.1, 170] (57.8) 92 [70.5, 161.9] (101.9) 36.5 [11.7, 39.9] (29.1) Highly mineralized water (n = 4)* 892 [568, 1138] (872.5) 67.4 [47, 219] (100.2) 27.8 [0.0, 77.0] (33.2) Still bottled waters (n = 70) Carbonated natural mineral waters (n = 5) Low mineralized water (n = 4)* 15.5 [1, 38.5] (17.6) 39.5 [27.7, 86.6] (48.3) 10.5 [2.5, 23.3] (11.7) Highly mineralized water (n = 1)* 1115 [1115, 1115] (1115) 53.7 [53.7, 53.7] (53.7) 9.2 [9.2, 9.2] (9.2) Median [P25, P75], except *Median [min, max] and (mean). TABLE III CONTENT OF SODIUM, CALCIUM AND MAGNESIUM IN 109 DIFFERENT TYPES OF NATURAL MINERAL WATERS ON SALE IN SPAIN (UNPUBLISHED DATA SUPPLIED BY THE COMPLUTENSE UNIVERSITY IN MADRID AND HOSPITAL LA FE IN VALENCIA) Na (mg/L) Ca (mg/L) Mg (mg/L) Very low mineralized water (n = 7) 3 [1.5, 6] (3.6) 3.3 [1.9, 6.6] (3.8) 1.4 [0.9, 2.3] (1.8) Low mineralized water (n = 75) 10 [3.4, 21.4] (18.7) 39.6 [24.3, 65.2] (43.3) 9.3 [3.9, 18.1] (12.2) Medium mineralized water (n = 11) 37.5 [32.2, 81.8] (59.5) 90.1 [74.1, 154.1] (108.16) 38.6 [19.5, 51.9] (39) Highly mineralized water (n = 2)* 1740.5 [717, 2764] (1740.5) 399.6 [189.1, 610.2] (399, 6) Still bottled water (n = 95) 107.3 [73.4, 141.2] (107.3) Carbonated bottled waters (n = 14) Low mineralized water (n = 3)* 42.4 [19.7, 114.9] (59) Medium mineralized water (n = 2)* 187.1 [156.9, 217.2] (187.1) 111.6 [82.8, 140.4] (111.6) 57.8 [11.7, 80.3] (49.9) 71 [60.4, 81.6] (71) Highly mineralized water (n = 9) 706 [558.8, 1092.1] (820.3) 12.9 [7.9, 36.6] (22.1) 56.9 [15, 96.9] (59) 27.6 [6.2, 34.7] (22.8) Median [P25, P75], except *Median [min, max] and (mean). RECOMMENDATIONS ON THE INTAKE OF KEY MINERALS: MAGNESIUM, CALCIUM AND SODIUM Table IV shows the daily intakes of magnesium, calcium and sodium recommended by the Institute of Medicine (IOM) (13) adapted to the world population. Also with reference to the Spanish population, table V shows the latest dietary intakes of magnesium, calcium and sodium recommended by FESNAD (Spanish Federation of Societies of Nutrition, Diet and Dietetics) (14). CONTRIBUTION OF DRINKING WATER TO MINERAL RECOMMENDATIONS All over the world it is becoming increasingly common for the daily intake of calcium and magnesium to be inadequate. In Spain, according to data from the National Survey on Dietary Intake (ENIDE) carried out in 2011, about 20-30% of the population (a percentage that can reach as high as 82% in women between 45 and 64 years of age) have an inadequate intake of calcium. And the percentage of the population with inadequate intakes magnesium is about 30%. Nevertheless, intakes of sodium have been ob- 7 C. FERREIRA-PÊGO, ET AL. ALIM. NUTRI. SALUD TABLE V TABLE IV DAILY INTAKES OF SODIUM, CALCIUM AND MAGNESIUM RECOMMENDED BY IOM Na (mg/day) Ca (mg/day) Mg (mg/day) ≤ 6 months 120 200 30 6-12 months 370 260 75 1-3 years 1,000 700 80 4-8 years 1,200 1,000 130 9-13 years 1,500 1,300 240 14-18 years 1,500 1,300 410 19-30 years 1,500 1,000 400 31-70 years 1,500 1,000 420 > 70 years 1,500 1,200 420 14-18 years 1,500 1,300 19-30 years 1,500 31-50 years Age Males DAILY INTAKES OF MAGNESIUM, CALCIUM AND SODIUM RECOMMENDED BY FESNAD FOR THE SPANISH POPULATION Age ≤ 6 months 7-12 months Na (mg/day) Ca (mg/day) Mg (mg/day) 120 400 40 370 525 75 1-3 years 1,000 600 85 4-5 years 1,200 700 120 6-9 years 1,200 800 170 10-13 years 1,500 1,100 280 Males 14-19 years 1,500 1,100 350 20-49 years 1,500 900 350 50-59 years 1,300 900 350 360 60-69 years 1,300 1,000 350 1,000 310 ≥ 70 years 1,200 1,000 350 1,500 1,000 320 Females ≥ 51 years 1,500 1200 320 10-13 years 1,500 1,100 250 Pregnancy 1,500 1,000-1,300 350-400 14-19 years 1,500 1,100 300 310-360 20-49 years 1,500 900 300 50-59 years 1,300 1,000 300 60-69 years 1,300 1,000 320 ≥ 70 years 1,200 1,000 320 Pregnancy 1,500 1,000 360 Breastfeeding 1,500 1,200 360 Females Breastfeeding 1,500 1,000-1,300 served to be above the daily recommended amounts (15). The consumption of weakly, medium or strongly mineralized water, which contain considerable amounts of calcium and magnesium can increase the total intake of minerals, and bring it closer to the recommendations (4). It is certainly true that the contribution of magnesium in water to total intake is small in comparison to the amount consumed through food. Even so, two liters of water with 35 mg/L of magnesium can provide 20% of the recommended 350 mg/day. In comparison, two liters of water with less than 10 mg/L of magnesium can provide less than 10% of daily needs. The same can be said of calcium since a liter of strongly mineralized water can provide approximately 15% of daily needs. The situation for sodium is different since strongly mineralized water contains a very high amount of this mineral. Thus, a liter of water that provides 890 mg of sodium would provide about 60% of daily intake. However, most of the weakly mineralized bottled waters analyzed in this study contain no more than 20 mg/L of sodium. Therefore, the regular consumption of natural mineral waters rich in magnesium could make a significant contribution to the nutritional recommendations of magnesium and sodium (16). It should be pointed out that the Spanish population was observed to consume an excessive amount of sodium only from food (15). Using the mean content of sodium, calcium and magnesium of 109 bottled natural mineral waters listed 8 above (Table III), we calculated the extent to which they matched the recommendations of calcium, magnesium and sodium. We created four examples (boy and girl between 10 and 13 years of age, and adults of both sexes), for which we used the EFSA’s recommendations for daily liquid consumption (1,680 mL for boys, 1,520 mL for girls, 1,600 mL for women and 2,000 mL for men) and the FESNAD’s recommendations for the daily intake of these minerals. The results are displayed in table VI. This analysis reveals that different types of water provide different amounts of minerals. For example, depending on the mineralization and the sex and age of the person, still bottled waters can provide between 0.5 and 88.8% of calcium and between 0.9 and 65.3% of the daily recommendation of magnesium. And carbonated bottled waters can provide between 6.9 and 24.8% of the recommended daily intake of calcium, and between 12.2 and 43.2% of magnesium, depending on the mineralization of the water. Several factors influence the nutritional contribution of mineral intake through water, either at the individual or the Vol. 23, N.º 1, 2016 WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH TABLE VI EXTENT TO WHICH WATER INTAKE MATCHES RECOMMENDATIONS FOR MINERAL INTAKE Boys (%) Girls (%) Women (%) Men (%) Still natural mineral waters Na Ca Mg Very low mineralized water 0.41 0.37 0.39 0.48 Low mineralized water 2.10 1.90 2.00 2.50 Medium mineralized water 6.67 6.03 6.35 7.94 Highly mineralized water 194.93 176.37 185.65 232.06 Very low mineralized water 0.57 0.52 0.67 0.84 Low mineralized water 6.62 5.99 7.70 6.93 Medium mineralized water 16.52 14.94 19.23 24.03 Highly mineralized water 61.03 55.22 71.04 88.80 Very low mineralized water 1.06 1.07 0.94 1.00 Low mineralized water 7.32 7.42 6.51 6.97 Medium mineralized water 23.42 23.74 20.82 22.31 Highly mineralized water 64.40 65.26 57.25 61.34 7.87 Carbonated natural mineral waters Na Ca Mg Low mineralized water 6.61 5.98 6.30 Medium mineralized water 20.95 18.95 19.95 24.94 Highly mineralized water 91.87 83.12 87.49 109.37 Low mineralized water 7.62 6.90 8.87 11.09 Medium mineralized water 17.05 11.31 19.84 24.80 Highly mineralized water 8.59 8.16 10.50 13.12 Low mineralized water 13.70 13.89 12.18 13.05 Medium mineralized water 42.61 43.17 37.87 40.58 Highly mineralized water 13.26 13.44 11.79 12.63 population level, because it depends not only on the individual but also on the source, the amount and the frequency of the consumption. So the general benefits on health will depend on the total intake of liquids and other factors, as well as the mineral composition of the water (2,3). A control case study carried out in France on 240 men and 424 women, using data from the SU.VI.MAX cohort, determined the contribution made by the consumption of natural mineral waters to the daily intake of calcium and magnesium. The population was divided into four groups (n = 166/group): regular drinkers of natural mineral water rich in magnesium and calcium, drinkers of medium mineralized water, drinkers of weakly mineralized water, and drinkers of tap water. The results showed that, depending on the concentration of calcium, natural mineral water can contribute a quarter of the total daily intake and, depending on the concentration of magnesium, can contribute between 6 and 17% of the total daily intake. The authors argue that natural mineral water can contribute significantly to the total intake of magnesium and calcium. They also point out that it can be a useful strategy for nutrition and dietary professionals to increase the calcium intake of patients who do not consume dairy products (17). The people who can benefit from the minerals present in drinking water are those who have diets that are lacking in the minerals in question: for example, in areas of the world where food is in short supply or where there are no programs of public health for nutrient supplementation. In those cases in which the mean intake of nutrients is below the dietary reference intake (DRI), the minerals provided by natural mineral water could be a supplement. Therefore, water with lower concentrations of these elements may be sufficient to benefit general health in some areas of the world, but higher concentrations are required if any effect is to be observed in other areas with greater needs (4). Nevertheless, drinking water can be an extra source of minerals not only in developing countries but also in developed countries. In Spain, for example, part of the population has been observed to have an inadequate intake of calcium and magnesium (15). 9 C. FERREIRA-PÊGO, ET AL. Nevertheless, is important to emphasise that the first priority in developing countries is to have potable water availability and not the quality of the mineral content. However the mineral content in drinking water must be considered important in designing public health programs in these countries. Although research has been limited, the studies reviewed highlight that water that is rich in minerals functions as a supplement but never as a substitute for the calcium and magnesium provided by food, and contributes to general balance and nutrition (2-4,6,16). More accurate data is required and studies of greater scientific relevance need to be carried out on the impact of the consumption of natural mineral water and its composition under a wider range of physiological and climatic conditions for the most vulnerable sectors of the population. This would enable us to assess more accurately the influence that the minerals in water have on health and sickness. BIOAVAILABILITY OF WATER MINERALS CALCIUM BIOAVAILABILITY Only about 0.1% of total body calcium is found in the extracellular liquid, about 1% of total body calcium is found inside the cells and the rest is stored in bones and teeth (18). This store can be as much as 99% of total body calcium, which functions as a key structural element (3). In this regard, bones act as great calcium reserves: they store it when there is an excess but also release it when the concentration in the extracellular liquid decreases. The body’s calcium reserve is special in comparison with other minerals because it is also functional: the increase in bone mass is linearly related to a reduction in the risk of fracture (19,20). Likewise, a clear relationship has been reported between an insufficient intake of calcium and a greater risk of osteoporosis (21,22). However, it should be pointed out that bone health is related not only to calcium but also to vitamin D (23). Inverse relationships have also been observed between the consumption of calcium and the risk of suffering from other diseases (3). The calcium that is not stored in the bone tissue has metabolic functions in many physiological processes: for example, the contraction of skeletal, cardiac and smooth muscle, blood clotting and the transmission of nerve signals, among others (18). It can also have beneficial effects on several non-skeletal systems of the human metabolism (24): for example, it can act as a transduction messenger (25). Excitable cells such as neurons are very sensitive to modifications in the concentration of calcium ions, so any increase in this concentration above its normal value (hypercalcemia) can cause excitation of the nervous system. 10 ALIM. NUTRI. SALUD Some studies suggest that when calcium comes from mineralized waters, just like the calcium that comes from food, it is absorbed through the human intestine (26,27). In a crossover experimental study, Couzy et al. (1995) analyzed the bioavailability of calcium in drinking water and compared it with the same amount of calcium from milk (1,000 mg) in 9 healthy women between 21 and 36 years of age. The study was divided into two stages, each of which lasted for five days. In each stage, for the first three days the volunteers consumed milk containing a specific amount of calcium (12.5 mmol/day) and for the last two days they consumed either milk or water depending on the study group they had been assigned to. The absorption of calcium was determined in a fasting state using stable isotope techniques. It was found that the calcium from water was absorbed and retained in the same way as the calcium from milk (28). Heaney et al. (1994) also used a crossover study design to study the bioavailability of calcium in calcium-rich natural mineral water in 18 healthy women. This was then compared with the bioavailability of the same amount of calcium in milk (2.5 mmol) using the isotope 45Ca. They observed that the calcium present in the water was highly bioavailable (an absorption fraction of 0.475), and as bioavailable as the calcium from milk (29). Another crossover trial analyzed the bioavailability of calcium from six different types of food (fresh cheese, calcium-rich fresh cheese, fresh cheese enriched with iron, enteral nutrition supplements, natural mineral water and natural mineral water consumed with a meal of spaghetti). This analysis was carried out in 12 health women between 20 and 29 years of age. Each stage of the intervention lasted for two days and there was a wash out period of two weeks between interventions. The absorption of calcium was analyzed using stable isotopes (44Ca and 48Ca). The absorption of calcium from drinking water was not significantly different from the absorption of calcium from dairy products. However, the absorption of calcium from natural mineral water consumed with a meal of spaghetti was significantly greater than the absorption of calcium from the other food assessed (46.1% vs. 37%; P < 0.05) (30). The authors believe that these results may be related to the stimulation of the secretion of gastric acid, the formation of soluble calcium complexes and a lower rate of gastric emptying, which leads to a better solution. Likewise, it should be pointed out that the consumption of calcium from natural mineral waters did not interfere in the consumption of calcium from other sources (largely dairy products). Bacciottini et al. (2004) studied the bioavailability of the calcium contained in calcium-rich natural mineral water in 27 participants (9 men, 9 pre-menopausal women and 9 post-menopausal women). Also, in eight of them the bioavailability of calcium from water was compared with the bioavailability of calcium from milk. The natural mineral water and milk were marked with 30 mg of isotope 44Ca. To ingest the same amount of calcium (100 mg), the subjects consumed 490 mL of natural mineral water and 83 mL of milk. It was observed that the calcium from the water was Vol. 23, N.º 1, 2016 highly bioavailable in the three groups of individuals, and that this bioavailability was equivalent to the calcium from the milk. Therefore, the authors suggest that calcium-rich natural mineral water be consumed in the context of a balanced diet that includes calcium-rich food (non-dairy products such as almonds, nuts, cabbage, etc.) so that the requirements of this mineral can be fulfilled in individuals who are intolerant to lactose or overweight (since the water is a non-caloric source of calcium) (31). However, it should be pointed out that to consume the same amount of calcium contained in milk, a greater volume of natural mineral water must be consumed (the exact amount obviously depends on its composition). A review carried out in 2006 confirmed the results discussed above that the capacity to absorb the calcium from all the mineral waters assessed seems to be similar to the absorption of calcium provided by milk when they are studied in the same conditions (32). Finally, a meta-analysis carried out in the year 2000 concludes that, despite the lack of studies in small populations, calcium from drinking water can be an interesting, effective and supplementary alternative to calcium consumed in milk or derivatives because of its comparable or even greater bioavailability (25). MAGNESIUM BIOAVAILABILITY Magnesium is the fourth most abundant cation in the human body and the second most abundant in the intracellular fluid. It is a cofactor in about 350 cellular enzymes, most of which are related to energy metabolism (for example, glycolysis and ATP metabolism) but it also modulates signal transduction and cell proliferation. It also acts as a cofactor in the transport of ions and nutrients, such as sodium, potassium and calcium, through membranes. It is also involved in protein and nucleic acid synthesis, and it is essential if normal sensitivity to insulin and proper vascular tone are to be maintained since it has been observed to be involved in neuromuscular excitability and muscle contraction (4,33,34). Neuromuscular hyperexcitability is the first problem perceived by individuals who present magnesium deficiency (35). The total body reserves of this mineral are about 25 g, and it is stored above all in bone tissue (33). Magnesium is generally absorbed into the human body in the intestine (principally in the ileum and the jejunum) in the form of ions (34). The intestinal bioavailability of magnesium depends on such factors as the type of salt it is contained in, the type of dose, the amount of active ingredient and the deposits of body magnesium (36). After absorption, the magnesium is transported to the tissues where it is taken up only if required (37). Magnesium frequently modulates ion transport by pumps, carriers and channels. The second part of the transcellular transport of magnesium is urinary excretion, which eliminates the excess in plasma. Approximately 75% of total plasma magnesium is filtered through the glomerular membrane. Anorexia, WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH nausea, vomiting, apathy and weakness are the primary symptoms of magnesium deficiency. Severe deficiency can cause paresthesia, muscle cramp, irritability, and attention deficit and mental confusion (34). In a crossover study carried out on 10 healthy men between 25 and 42 years of age, Verhas et al. (2002) analyzed the bioavailability of magnesium from natural mineral waters. Each individual took 300 mL of natural mineral water with 1.2 mmol of 28Mg or was given 1.2 mmol of 28Mg intravenously in two different sessions (with a washout period of at least a week). They observed that the bioavailability of magnesium from natural mineral water was 59% (38). Another crossover study carried out in 10 healthy women between 25 and 45 years of age used stable isotope techniques to study the bioavailability of magnesium from water associated with the consumption of a meal. The population was divided into two groups of similar ages and BMIs. For 4 days, the two groups consumed magnesium-rich natural mineral water by itself on two alternate days or accompanied by a light meal (56 g of toast, 10 g of butter and 30 g of marmalade) on the other two days. The authors showed that the absorption and retention of magnesium from natural mineral water was greater when it was consumed with a light meal. The results were the same for both groups independently of the order in which they started the study (16). It should be pointed out that this study was short, the sample was small and there was no wash out period between the stages. Another crossover study analyzed the effect on the bioavailability of magnesium consumed in natural mineral water in 12 healthy Caucasian males between 18 and 40 years of age. Each subject was randomly assigned to one of the two existing groups. All the participants consumed 1.5 liters of natural mineral water containing a total of 84 mg. One of the groups took seven servings of water on the first day and two on the second, while the other group took two on the first day and seven on the second. The results indicated that the absorption of magnesium from natural mineral water was 32.4% when it was consumed in two servings and 50.5% when it was consumed in seven. The authors recommend consuming magnesium-rich water throughout the day to cover the needs of this mineral given the greater absorption of magnesium when water is consumed in seven different serving (39). For health professionals, and particularly dieticians and nutritionists, including natural mineral water in the diet may be a valid option to supplement the intake of calcium and magnesium, and cover the daily dietary recommendations for these nutrients. POSSIBLE BENEFITS OF CONSUMING MINERALS IN WATER In its Geneva congress, the WHO announced that the consumption of strongly mineralized water has no 11 C. FERREIRA-PÊGO, ET AL. ALIM. NUTRI. SALUD known effects on health (6). What is more, as has been mentioned above, strongly mineralized water, and particularly if it is very strongly mineralized, can provide a considerable calcium and magnesium intake for some individuals alongside that provided by the consumption of source foods (17). magnesium and magnesium from the diet are inversely related to the total risk of cardiovascular events (57). In two other recent meta-analyses, similar effects were observed between the high consumption of magnesium and a reduced risk of suffering a cerebral vascular accident or heart ischemic disease (43,58). Some authors have suggested that the consumption of water with medium-high concentrations of magnesium and calcium and low concentrations of sodium (Table II) may help to cover the daily recommendations of minerals, and consequently improve some aspects of health (1). The relationship between the intake of both magnesium and calcium from strongly mineralized waters and the effects of these minerals on various aspects of health is controversial. Previous studies suggest an inverse relationship between the intake of magnesium and calcium from drinking water and levels of arterial pressure (59-61). According to a recent review by Sengupta, most large-scale studies have observed an inverse relation between the consumption of strongly mineralized water and cardiovascular disease (6,62,63). However, other studies have not observed this relation (64-65). CARDIOVASCULAR DISEASE Magnesium uses cardiomyocytes to regulate the flow of cations through the calcium and potassium channels. It is also required to maintain normal cardiac electrophysiology (40). Abnormally low levels of circulating magnesium is a well-known risk factor for cardiac arrest (41). It is currently thought that the effect of magnesium in the prevention of cardiovascular diseases may be partly mediated through inflammation. An increase in extracellular magnesium concentrations can reduce inflammatory response, while a decrease can activate phagocytes and endothelial cells. It is also thought that the inflammation caused by magnesium deficiency may be the mechanism that induces hypertriglyceridemia and pro-atherogenic changes in the lipoprotein profile (42-44). The consumption of magnesium has been inversely associated with markers of systemic inflammation and endothelial dysfunction in the general population (45) and post-menopausal women (46). Likewise, endothelial cells make an active contribution to inflammation in states of magnesium deficiency. At the physiological level, magnesium is regarded as a calcium blocker, so it reduces the release of calcium from and to the sarcoplasmic reticulum, and protects the cells against calcium overload during ischaemia (47-49). Magnesium reduces systemic and pulmonary vascular resistance, with the resulting decrease in arterial pressure and a slight increase in the cardiac index (50-52). Any increase in the levels of extracellular magnesium reduces arterial tone, and increases the endogenous dilation (adenosine, potassium and some prostaglandins) and exogenous dilation (isoproterenol and nitroprusside) of some vasodilators (47,49,53,54). As a result, magnesium slightly reduces systolic and diastolic arterial pressure (55). In a recent prospective study carried out in a population at high cardiovascular risk by our group of research, an inverse relationship was observed between the consumption of magnesium from the diet (without taking the consumption of natural mineral water into account) and the incidence of cardiovascular disease, cancer and all-cause disease (56). A recent meta-analysis has assessed the association between magnesium and the risk of suffering a cardiovascular event, and demonstrated that both serum 12 Leoni et al. (1985) studied the relation between the hardness of water and the pattern of mortality as a result of cardiovascular diseases, ischemic disease and cerebrovascular diseases in the region of Abruzzio (Italy) in a town of 594,323 inhabitants. They observed an inverse relation between the prevalence of cardiovascular mortality and the hardness of the water, but only in the population between 45 and 64 years of age (66). Case-control studies carried out in Sweden on 1,746 women (67) and 1,843 men (68) between 50 and 69 years of age compared the consumption of calcium and magnesium from water among those who had died of myocardial infarction (cases) and those who had died of cancer (controls). Both studies revealed an inverse relation between the consumption of magnesium from natural mineral water and mortality by myocardial infarction. In women, but not in men, this inverse relation was also observed with the consumption of calcium from natural mineral water (67). In Finland and South Africa an inverse relation was also observed between the concentrations of magnesium in drinking water and the risk of death attributed to ischemic heart disease (69). Since then, several studies have reported an inverse relation between the hardness of water and cardiovascular disease, particularly in relation to the content of magnesium and calcium in drinking water. Nevertheless, it also points out that more large-scale and longer-lasting epidemiological studies are required to determine how the consumption of natural mineral water and its components (mainly calcium and magnesium) affects health. CEREBROVASCULAR MORTALITY The lack of magnesium leads to a decrease in the intracellular concentration of potassium and an increase in calcium levels. It can also increase the contractility of blood vessels. Magnesium causes vasodilation by stimulating the Vol. 23, N.º 1, 2016 release of endothelial prostacyclin and, in vivo, it prevents the vasoconstriction of intracranial vessels after experimental subarachnoid haemorrhage (6). Some epidemiological studies have shown that calcium from the diet (not taking into account the calcium from natural mineral water) is inversely associated with levels of arterial tension. These results suggest that it is reasonable to expect that the intake of calcium in the diet may reduce the risk of cerebrovascular events (70). Nevertheless, so far there have been no solid epidemiological studies, or intervention studies, to confirm this. CANCER Some studies suggest an inverse relation between the intake of calcium from the diet and the risk of colorectal cancer (71). However, very few studies have examined the relation between the consumption of certain minerals from water and the risk of cancer. Some case-control studies suggest an inverse association between the intake of calcium and magnesium from drinking water and the risk of mortality as the result of colon cancer (72) or gastric cancer (73,74). In these studies, the population was divided into tertiles according to the content of calcium and magnesium in the water supply of their area of residence. Gastric or colon cancer mortality (cases) was compared with all-cause mortality (controls in the area between 1987 and 1993). The authors revealed a negative relation between higher contents of calcium in the water supplied and the risk of mortality as a result of gastric or colon cancer (72,73). In the case of magnesium, an inverse relation was only observed in those individuals whose water had higher contents of magnesium and gastric cancer (73). More recent studies also support the inverse relation between the intake of calcium and the lower risk of gastric cancer (74). WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH In this regard, important prospective epidemiological studies (44,80,81) have assessed the intake of magnesium from the diet and the risk of developing type 2 diabetes. In a study of 85,060 women and 42,872 men, followed for 18 and 12 years, respectively, it was observed that those subjects in the highest quintile of magnesium intake from the diet had a protection against developing type 2 diabetes of 34% in women and 33% in men (80). More recent studies also confirm this association in Japanese (81) and American populations (44). It has been suggested that the inverse association between magnesium consumption and the incidence of diabetes is mediated by an improvement in sensitivity to insulin and a reduction in inflammatory processes, as has been observed in intervention studies with magnesium supplements (82). Hruby et al. (2014) showed that a higher intake of magnesium was associated with a 37% lower risk of undergoing alterations in levels of plasma glucose and a 32% lower risk of developing diabetes in those who already presented altered basal glucose at the beginning of the study (44). A 20-year prospective study on 83,779 women analyzed the relationship between the consumption of calcium and the risk of type 2 diabetes. The authors observed that women with a total daily calcium intake (diet + supplements) that was equal to or above 1,200 mg presented a 21% lower risk of developing diabetes than those who consumed less than 600 mg/day (83). Similar results with respect to protection against type 2 diabetes were observed in other prospective studies (84,85), reviews (86) and meta-analyses (87) which assessed the consumption of calcium from the daily intake of dairy products. One important meta-analysis reported a relationship between intake or calcium serum levels and the prevalence or incidence of type 2 diabetes. However, the authors conclude that the available scientific evidence is limited since most of the studies are cross-sectional and in many cases were not adjusted for important confounding factors (88). Recently, another case-control study examined the intake of calcium and magnesium from drinking water and lung-cancer mortality in women. No significant relationship was observed (75). Although the relationship between magnesium consumption and diabetes seems to be quite clear, a sufficient number of studies have not proved that there is a relationship between magnesium from natural mineral waters and the prevalence or incidence of type 2 diabetes. Likewise, to date no studies have related the consumption of calcium from natural mineral waters with glucose metabolism. Therefore, to date, the scientific evidence available is not sufficient to demonstrate a relationship between the intake of calcium and magnesium from natural mineral water and the risk of suffering from several types of cancer. NEPHROLITHIASIS DIABETES MELLITUS Magnesium plays an important role in the physiopathology of diabetes mellitus. Magnesium deficiency in cells can decrease the insulin secretion through interaction with cell calcium homeostasis (76). Hypomagnesemia is common to individuals diagnosed with type 2 diabetes mellitus (77–79). At present, there is general consensus consuming large amounts of liquid can help prevent urinary lithiasis because it decreases the concentrations of elements that can crystalise (89). However, there is some controversy about the possible impact of the different qualities of natural mineral water, including the hardness, on the risk of renal calculi (90). A cross-sectional study carried out in 4,833 patients with a history of nephrolithiasis examined the hardness of the 13 C. FERREIRA-PÊGO, ET AL. water habitually consumed in the geographical area they lived in and the number of episodes of renal calculi that they presented. No significant differences were observed. However, the concentrations of calcium, magnesium and citrate present in urine over 24 hours correlated directly with the content of these minerals in drinking water (91). A study carried out in 29 men with a history of renal calculi (n = 14) and patients without the pathology (n = 15) examined the effect of consuming three different types of water (minimal hardness, moderate hardness [tap water] and maximum hardness) on urinary parameters. The authors observed that in the group that had experienced nephrolithiasis, the calcium-creatine ratio increased with the hardness of the water consumed, which lead to a greater risk of renal calculi. These results were not observed in the group with no history of the pathology. The patients with a history of nephrolithiasis also presented a ratio of magnesium/creatine excretion that was significantly lower than that of the patients without the pathology. The authors regard that this parameter may be one of the reasons why patients with a history of nephrolithiasis tend to form renal calculi (90). A random, double-blind, crossover study carried out on 18 patients with idiopathic nephrolithiasis analyzed whether the hardness of the water consumed modified the risk of renal calculi if it was consumed apart from the main meals. The consumption of strongly mineralized water was associated with a 50% increase in the urinary concentration of calcium with no changes in the excretion of oxalates, and tripled the calcium citrate index in comparison with the consumption of weakly mineralized water. The authors suggest that the recurrence of renal calculi can be reduced if weakly mineralized water is consumed apart from main meals because it is associated with the lowest risk (92). Siener et al. (2004) carried out an intervention study on 12 healthy men. They analyzed the effect of calcium-rich natural mineral water (232 mg/L), magnesium (337 mg/L) and bicarbonate (3,388 mg/L) on the composition of urine. The authors observed that the content of magnesium and bicarbonate in natural mineral water led to favorable changes in urinary pH, the excretion of magnesium and citrate, and inhibitors of the formation of calcium oxalate calculi. Nevertheless, the urinary excretion of oxalate did not diminish. Therefore, further studies are required if we are to be able to affirm that the intake of calcium-rich natural mineral water can limit intestinal absorption and the urinary excretion of calcium and oxalate (93). To date no association has been demonstrated between the hardness of water, its composition and calcium content, and the formation of urinary calculi. Some studies suggest that the consumption of weakly or very weakly mineralized water may be more beneficial for the prevention of renal lithiasis than the consumption of strongly mineralized water, since it is associated with a lower risk of recurrence of calcium calculi (92,94). However, to reduce the risk of the recurring formation of calcium calculi, the European Association of Urology recommends an adequate con- 14 ALIM. NUTRI. SALUD sumption of calcium and only recommends restriction for important individual health reasons and always following specialist medical advice (89). The formation of renal calculi is a complex process that has not been fully clarified, and factors such as diet, physical activity, environmental conditions, medicines, supplements and underlying diseases can be important factors (90). MINERAL BONE DENSITY As has been pointed out previously, although dairy products are the main source of calcium from the diet, the calcium from natural mineral water can make a valuable extra contribution of calcium (95). A cross-sectional study was made of the relationship between the consumption of calcium from natural mineral water and the femoral bone density in 4,434 women of more than 75 years of age from the EPIDOS cohort. It was observed that an increase of 100 mg/day of calcium from natural mineral water was associated with an increase of 0.5% in femoral bone density, while a similar increase in the consumption of calcium from other sources of the diet was only associated with a greater bone density of 0.2%, although the difference was not significant. The authors suggested that the consumption of calcium-rich water may make an extra contribution, particularly in adult and elderly women who consume little calcium from food such as dairy products (95). Likewise, in a study carried out in Norway on 5,472 men and 13,604 women between 50 and 85 years of age followed for between 3 and 14 years an inverse relationship was observed between the consumption of calcium and magnesium from water and the risk of hip fracture. The authors concluded that the magnesium present in drinking water may protect against hip fractures. Further research is required to provide more scientific evidence and clarify this possible relationship (96). In a cohort study of 255 women, Costi et al. (1999) analyzed the importance of calcium from water for maintaining the bone mass. They divided the participants into two groups: those who regularly drank strongly mineralized water (group A) and those who consumed different types of water with a lower content of calcium (group B). The mean values of bone density were slightly (but significantly) higher in the participants from group A, even after adjusting for confounding variables such as age, BMI and menopause (97). Nevertheless, the influence of calcium and magnesium on bone health may be affected not only by their concentration in natural mineral water, but also by the concentrations of other minerals. For example, in a crossover study carried out on 39 post-menopausal women (mean age 64 years old), it was observed that, with the same concentration of calcium, a bicarbonate-rich water had a more positive effect on the metabolism than a sulfate-rich water. In the group that consumed water rich in calcium and bicarbonate, the Vol. 23, N.º 1, 2016 WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH ionized calcium in the urine and its pH increased, while the parathyroid hormone (PTH) and bone resorption markers decreased (98). In a double-blind, randomized trial controlled with placebo for six months, Meunier et al. (2005) observed similar results. Their objective was to assess the effects of the daily consumption of calcium-rich natural mineral water on the levels of PTH in serum and several biochemical markers of bone remodeling. It was carried out on 176 post-menopausal women (mean age 70 years old) who presented a low calcium intake (< 700 mg/day). The placebo group consumed 1 liter of natural mineral water with low calcium content (10 mg/L), and the test group consumed 1 liter of natural mineral water with high calcium content (596 mg/L). The authors observed that after an intervention of six months with calcium-rich water, the PTH levels decreased by 14.1%. These decreases were in the order of 8.6% for osteocalcine, 11.5% for bone alkaline phosphatase, and 16.3% and 13% for type 1 collagen in serum and urine, respectively. The authors concluded that a daily calcium supplement of 596 mg through the consumption of 1 liter of calcium-rich natural mineral water can help to reduce age-related bone loss (99). be carried out on larger populations and for longer periods before any recommendations can be made to the general population (95,96,99). RISK OF VERY-LOW MINERALIZED WATER CONSUMPTION A WHO report has evaluated some years ago the possible harmful effects of drinking this type of water, however the lack of research on this issue was evident, conducting a series of recommendations for minimum, maximum and/or optimal mineral content of water (Table VII). The potential adverse effects of demineralized water have not sufficiently been studied to date since this type of water is not normally found freely in nature, except in the form of rain water and naturally formed ice. Unfortunately, during the last two decades, little research has been carried out into the beneficial or harmful effects of some minerals from drinking water. CONCLUSION IN SUMMARY In accordance with the existing literature on the consumption of calcium or magnesium, or both, from drinking water, it is suggested that there is an inverse relationship with the risk of colorectal cancer, gastric cancer, cerebrovascular and cardiovascular diseases, cardiovascular-cause mortality, diabetes mellitus, nephrolithiasis and even bone diseases. However, the relation between the consumption of drinking water rich in minerals and their effect on various aspects of human health have not been sufficiently elucidated, so it is clear that more epidemiological studies need to Different types of water make widely varying dietary contributions of calcium, magnesium and sodium. For example, in Spain depending on the type of mineralization of still bottled waters, they can provide between 0.5 and 88.8% of calcium recommendations, between 0.9 and 65.3% of magnesium and between 0.4 and 232.1% of sodium. Also depending on mineralization, carbonated waters can provide between 6.9 and 24.8% of the recommended intake of calcium, between 12.2 and 43.2% of magnesium and between 6.6 and 109.4% of sodium. However, in this review most of the waters analyzed are weakly mineralized natural mineral waters that can provide between 6 and 7.7% of calcium, TABLE VII WHO RECOMMENDATIONS ON MINIMUM, MAXIMUM AND/OR OPTIMUM MINERAL CONTENT OF VERY WEAKLY MINERALIZED WATERS (TDS < 50 mg/L) Minimum levels Optimum levels Maximum levels 100 mg/L 250-500 mg/L ND ND ND 6.5 mEq/L Bicarbonate 30 mg/L ND ND Calcium 30 mg/L ND ND Magnesium 10 mg/L 20-30 mg/L ND Sodium ND ND 200 mg/L Boron ND ND 0.5 mg/L Bromine ND ND 0.01 mg/L Total dissolved salts Alkalinity ND: No data. 15 C. FERREIRA-PÊGO, ET AL. between 6.5 and 7.4% of magnesium and between 1.8 and 2.5% of sodium. These results indicate that drinking water can be a source of extra minerals not only in developing countries but also in such developed countries as Spain, the population of which presents an inadequate consumption of calcium and magnesium. Moreover, despite the limited amount of scientific evidence available to date, the calcium and magnesium from drinking water may be an interesting, effective and complementary alternative to consuming these minerals through food because their bioavailability is similar or even greater. Although food are the principal source of this minerals, for health professionals, particularly dietitians-nutritionists, the inclusion of natural mineral waters in the diet may be a valid option to complement the intake of calcium and magnesium, and therefore cover the daily dietary recommendations of these nutrients. The existent scientific literature suggests that the consumption of calcium and/or magnesium from drinking waters are inversely related to the risk of some chronic diseases. If these relations are to be firmly established, however, further epidemiological studies on large population samples are required● CORRESPONDENCE: Jordi Salas-Salvadó Human Nutrition Unit. Faculty of Medicine and Healthy Sciences Universitat Rovira i Virgili Sant Llorenç, 21, 43201 Reus, Tarragona e-mail address: jordi.salas@urv.cat REFERENCES 1. Garzon P, Eisenberg M. Variation in the mineral content of commercially available bottled waters: implications for health and disease. The American journal of medicine 1998;105(2):125-30. 2. Azoulay A, Garzon P. Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. Journal of general internal medicine 2001;16:168-75. 3. World Health Organization. Calcium and Magnesium in Drinking-Water - Public health significance. World Health Organization 2009;67:612-3. 4. World Health Organization. Nutrients in Drinking Water. World Health Organization; 2005. 5. BOE-A-2011-971. Real Decreto 1798/2010, de 30 de diciembre, por el que se regula la explotación y comercialización de aguas minerales naturales y aguas de manantial envasadas para consumo humano; 2011. p. 1–22. 6. Sengupta P. Potential Health Impacts of Hard Water. International journal of preventive medicine 2013;4:866-75. 7. European Union. Commission Regulation (EU) No. 115/2010 of 9 February 2010. 8. BOE-A-2003-3596. Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. 9. BOE 259 de 29-12-2002. Real Decreto 1074/2002. 10. EFSA. How much water does my body need ? The scientific answer from the European Food Safety Authority. EFBW Scientific Folio n.°1. 2010;1:5-6. 16 ALIM. NUTRI. SALUD 11. Agostoni C, Bresson J, Fairweather-Tait S. Scientific opinion on dietary reference values for water. EFSA Journal 2010;8:1-48. 12. Welch BE, Buskirk ER, Iampietro PF. Relation of climate and temperature to food and water intake in man. Metabolism: clinical and experimental 1958;7:141-8. 13. Ross C, Taylor C, Yaktine A, Del Valle H. Dietary Reference Intakes Estimated. En: Dietary Reference Intakes for Calcium and Vitamin D Washington D.C.: The National Academies Press; 2011. p. 1103-15. 14. Federación Española de Sociedades de Nutrición Alimentación y Dietética. Ingestas Dietéticas de Referencia (IDR) para la población española. Navarra: Ediciones Universidad de Navarra. S.A. (EUNSA); 2010. p. 341. 15. Agencia Española de Seguridad Alimentaria y Nutrición. Evaluación Nutricional De La Dieta Española II - Micronutrientes. Sobre datos de la Encuesta Nacional de Ingesta Dietética (ENIDE). AESAN, 2011. 16. Sabatier M, Arnaud MJ, Kastenmayer P, Rytz A, Barclay D V. Meal effect on magnesium bioavailability from mineral water in healthy women. The American journal of clinical nutrition 2002;75:65-71. 17. Galan P, Arnaud MJ, Czernichow S, Delabroise AM, Preziosi P, Bertrais S, et al. Contribution of mineral waters to dietary calcium and magnesium intake in a French adult population. Journal of the American Dietetic Association 2002;102:1658-62. 18. Guyton AC, Hall JE. Parathyroid Hormone. Calcitonin. Calcium and Phosphate Metabolism. Vitamin D. Bone and Teeth. En: Textbook of Medical Physiology. 11ª ed. 2007. p. 978-95. 19. Van den Berg P, van Haard PMM, van den Bergh JPW, Niesten DD, van der Elst M, Schweitzer DH. First quantification of calcium intake from calcium-dense dairy products in Dutch fracture patients (the Delft cohort study). Nutrients 2014;6:2404-18. 20. Włodarek D, Głąbska D, Kołota A, Adamczyk P, Czekajło A, Grzeszczak W, et al. Calcium intake and osteoporosis: the influence of calcium intake from dairy products on hip bone mineral density and fracture incidence - a population-based study in women over 55 years of age. Public health nutrition 2014;17:383-9. 21. Fan T, Nocea G, Modi A, Stokes L, Sen SS. Calcium and vitamin D intake by postmenopausal women with osteoporosis in Spain: an observational calcium and vitamin D intake (CaVIT) study. Clinical interventions in aging 2013;8:689-96. 22. Kim KM, Choi SH, Lim S, Moon JH, Kim JH, Kim SW, et al. Interactions Between Dietary Calcium Intake and Bone Mineral Density or Bone Geometry in a Low Calcium Intake Population (KNHANES IV 2008-2010). The Journal of clinical endocrinology and metabolism 2014;99:2409-17. 23. Lips P, Gielen E, van Schoor NM, Vitamin D supplements with or without calcium to prevent fractures. BoneKEy reports 2014;3:512. 24. McCarron DA, Heaney RP. Estimated healthcare savings associated with adequate dairy food intake. American journal of hypertension 2004;17:88-97. 25. Bohmer H, Müller H, Resch KL. Calcium supplementation with calcium-rich mineral waters: a systematic review and meta-analysis of its bioavailability. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2000;11:938-43. 26. Bushinsky DA, Monk RD. Electrolyte quintet: Calcium. Lancet 1998;352:306-11. 27. Rasmussen H. The calcium messenger system (1). The New England journal of medicine 1986;314:1094-101. 28. Couzy F, Kastenmayer P, Vigo M, Clough J, Munoz-Box R, Barclay D V. Calcium bioavailability from a calcium- and sulfate-rich Vol. 23, N.º 1, 2016 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. mineral water, compared with milk, in young adult women. The American journal of clinical nutrition 1995;62:1239-44. Heaney RP, Dowell MS. Absorbability of the calcium in a high-calcium mineral water. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 1994;4:323,4. Van Dokkum W, De La Guéronnière V, Schaafsma G, Bouley C, Luten J, Latgé C. Bioavailability of calcium of fresh cheeses. enteral food and mineral water. A study with stable calcium isotopes in young adult women. The British journal of nutrition 1996;75:893-903. Bacciottini L, Tanini A, Falchetti A, Masi L, Franceschelli F, Pampaloni B, et al. Calcium bioavailability from a calcium-rich mineral water. with some observations on method. Journal of clinical gastroenterology 2004;38:761-6. Heaney RP. Absorbability and utility of calcium in mineral waters. The American journal of clinical nutrition 2006;84:371-4. World Health Organization. Hardness in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization; 2011. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A, Magnesium. An update on physiological. clinical and analytical aspects. Clinica chimica acta; international journal of clinical chemistry 2000;294:1-26. Durlach J, Bac P, Durlach V, Bara M, Guiet-Bara A. Neurotic. neuromuscular and autonomic nervous form of magnesium imbalance. Magnesium research: official organ of the International Society for the Development of Research on Magnesium 1997;10:169-95. Benech H, Grognet JM. Recent data on the evaluation of magnesium bioavailability in humans. Magnesium research: official organ of the International Society for the Development of Research on Magnesium 1995;8:277-84. Vormann J. Magnesium: nutrition and metabolism. Molecular aspects of medicine;24:27-37. Verhas M, de la Guéronnière V, Grognet J-M, Paternot J, Hermanne A, Van den Winkel P, et al. Magnesium bioavailability from mineral water. A study in adult men. European journal of clinical nutrition 2002;56:442-7. Sabatier M, Grandvuillemin A, Kastenmayer P, Aeschliman JM, Bouisset F, Arnaud MJ, et al. Influence of the consumption pattern of magnesium from magnesium-rich mineral water on magnesium bioavailability. The British journal of nutrition 2011;106:331-4. Mubagwa K, Gwanyanya A, Zakharov S, Macianskiene R. Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium. Archives of biochemistry and biophysics 2007;458:73-89. Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010;122:S729-67. Shechter M. Magnesium and cardiovascular system. Magnesium research 2010;23:60-72. Del Gobbo LC, Imamura F, Wu JHY, de Oliveira Otto MC, Chiuve SE, Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. The American journal of clinical nutrition 2013;98:160-73. Hruby A, O’Donnell CJ, Jacques PF, Meigs JB, Hoffmann U, McKeown NM. Magnesium Intake Is Inversely Associated With Coronary Artery Calcification: The Framingham Heart Study. JACC. Cardiovascular imaging 2014. Song Y, Li TY, van Dam RM, Manson JE, Hu FB. Magnesium intake and plasma concentrations of markers of sys- WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. temic inflammation and endothelial dysfunction in women. The American journal of clinical nutrition 2007;85:1068-74. Chacko SA, Song Y, Nathan L, Tinker L, de Boer IH, Tylavsky F, et al. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes care 2010;33:304-10. Mroczek WJ, Lee WR, Davidov ME. Effect of magnesium sulfate on cardiovascular hemodynamics. Angiology 1977;28:720-4. Rasmussen HS, Larsen OG, Meier K, Larsen J. Hemodynamic effects of intravenously administered magnesium on patients with ischemic heart disease. Clinical cardiology 1988;11:824-8. Altura BM, Altura BT. New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. II. Experimental aspects. Magnesium 1985;4:245-71. Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. American heart journal 1984;108:188-93. Holroyde MJ, Robertson SP, Johnson JD, Solaro RJ, Potter JD. The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. The Journal of biological chemistry 1980;255:11688-93. Sordahl LA. Effects of magnesium. Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Archives of biochemistry and biophysics 1975;167:104-15. Cotton DB, Gonik B, Dorman KF. Cardiovascular alterations in severe pregnancy-induced hypertension: acute effects of intravenous magnesium sulfate. American journal of obstetrics and gynecology 1984;148:162-5. Altura BM. Magnesium-neurohypophyseal hormone interactions in contraction of vascular smooth muscle. The American journal of physiology 1975;228:1615-20. Jee SH, Miller ER, Guallar E, Singh VK, Appel LJ, Klag MJ. The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. American journal of hypertension 2002;15:691-6. Guasch-Ferré M, Bulló M, Estruch R, Corella D, MartínezGonzález MA, Ros E, et al. Dietary Magnesium Intake Is Inversely Associated with Mortality in Adults at High Cardiovascular Risk. The Journal of nutrition 2013;144:55-60. Qu X, Jin F, Hao Y, Li H, Tang T, Wang H, et al. Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. PloS one 2013;8:e57720. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. The American journal of clinical nutrition 2012;95:362-6. Sauvant MP, Pepin D. Drinking water and cardiovascular disease. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2002;40:1311-25. Kesteloot H, Joossens J V. Relationship of dietary sodium. potassium. calcium. and magnesium with blood pressure. Belgian Interuniversity Research on Nutrition and Health. Hypertension 1988;12:594-9. Joffres MR, Reed DM, Yano K. Relationship of magnesium intake and other dietary factors to blood pressure: the Honolulu heart study. The American journal of clinical nutrition 1987;45:469-75. Anderson TW, Neri LC, Schreiber GB, Talbot FD, Zdrojewski A. Letter: Ischemic heart disease. water hardness and myocardial magnesium. Canadian Medical Association journal 1975;113:199-203. Masironi R, Pisa Z, Clayton D. Myocardial infarction and water hardness in the WHO myocardial infarction registry network. Bulletin of the World Health Organization 1979;57:291-9. 17 C. FERREIRA-PÊGO, ET AL. 64. Mackinnon AU, Taylor SH. Relationship between “sudden” coronary deaths and drinking water hardness in five Yorkshire cities and towns. International journal of epidemiology 1980;9:247-9. 65. Sonneborn M, Mandelkow J. German studies on health effects of inorganic drinking water constituents. The Science of the total environment 1981;18:47-60. 66. Leoni V, Fabiani L, Ticchiarelli L. Water hardness and cardiovascular mortality rate in Abruzzo. Italy. Archives of environmental health 1985;40:274-8. 67. Rubenowitz E, Axelsson G, Rylander R. Magnesium and calcium in drinking water and death from acute myocardial infarction in women. Epidemiology (Cambridge. Mass.) 1999;10:31-6. 68. Rubenowitz E, Axelsson G, Rylander R. Magnesium in drinking water and death from acute myocardial infarction. American journal of epidemiology 1996;143:456-62. 69. Luoma H, Aromaa A, Helminen S, Murtomaa H, Kiviluoto L, Punsar S, et al. Risk of myocardial infarction in Finnish men in relation to fluoride. magnesium and calcium concentration in drinking water. Acta medica Scandinavica 1983;213:171-6. 70. Allender PS, Cutler JA, Follmann D, Cappuccio FP, Pryer J, Elliott P. Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials. Annals of internal medicine 1996;124:825-31. 71. Larsson SC, Bergkvist L, Rutegård J, Giovannucci E, Wolk A. Calcium and dairy food intakes are inversely associated with colorectal cancer risk in the Cohort of Swedish Men. The American journal of clinical nutrition 2006;83:667-73; quiz 728-9. 72. Yang CY, Chiu HF, Chiu JF, Tsai SS, Cheng MF. Calcium and magnesium in drinking water and risk of death from colon cancer. Japanese journal of cancer research : Gann 1997;88:928-33. 73. Yang CY, Cheng MF, Tsai SS, Hsieh YL. Calcium. magnesium. and nitrate in drinking water and gastric cancer mortality. Japanese journal of cancer research : Gann 1998;89:124-30. 74. Liao YH, Chen PS, Chiu HF, Yang CY. Magnesium in drinking water modifies the association between nitrate ingestion and risk of death from esophageal cancer. Journal of toxicology and environmental health. Part A 2013;76:192-200. 75. Cheng MH, Chiu HF, Tsai SS, Chen CC, Yang CY. Calcium and magnesium in drinking-water and risk of death from lung cancer in women. Magnesium research: official organ of the International Society for the Development of Research on Magnesium 2012;25:112-9. 76. Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, et al. Role of magnesium in insulin action. diabetes and cardio-metabolic syndrome X. Molecular aspects of medicine 2003;24:39-52. 77. Barbagallo M, Di Bella G, Brucato V, D’Angelo D, Damiani P, Monteverde A, et al. Serum ionized magnesium in diabetic older persons. Metabolism: clinical and experimental 2013. 78. Galli-Tsinopoulou A, Maggana I, Kyrgios I, Mouzaki K. Grammatikopoulou MG, Stylianou C, et al. Association between magnesium concentration and HbA1c in children and adolescents with type 1 diabetes mellitus. Journal of diabetes 2014;6(4):369-77. 79. Pasula S, Sameera K. Trace elements in diabetes mellitus. Journal of clinical and diagnostic researc: JCDR 2013;7:1863-5. 80. López-Ridaura R, Willett W, Rimm E, Liu S, Stampfer M, Manson J, et al. Magnesium intake and risk of type 2 diabetes in men and women. Diabetes care 2004;27:134-40. 81. Hata A, Doi Y, Ninomiya T, Mukai N, Hirakawa Y, Hata J, et al. Magnesium intake decreases Type 2 diabetes risk through the improvement of insulin resistance and inflammation: the Hisayama Study. Diabetic medicine : a journal of the British Diabetic Association 2013;30:1487-94. 18 ALIM. NUTRI. SALUD 82. Mooren F, Kruger K, Volker K, Golf S, Wadepuhl M, Kraus A. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects - a double-blind. placebo-controlled. randomized trial. Diabetes Obes Metab2 2011;13:281-4. 83. Pittas A, Dawson-Hughes B, Li T, Van Dam R, Willet W, Manson J, et al. Vitamin D and calcium intake in relation to type 2 Diabetes in women. Diabetes care 2006;29:650-6. 84. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, et al. A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes care 2006;29:1579-84. 85. Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB. Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Archives of internal medicine 2005;165:997-1003. 86. Kalergis M, Leung Yinko SSL, Nedelcu R. Dairy products and prevention of type 2 diabetes: implications for research and practice. Frontiers in endocrinology 2013;4:90. 87. Tong X, Dong JY, Wu ZW, Li W, Qin LQ. Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. European journal of clinical nutrition 2011;65:1027-31. 88. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. The Journal of clinical endocrinology and metabolism 2007;92:2017-29. 89. Tiselius HG, Ackermann D, Alken P, Buck C, Conort P, Gallucci M. Guidelines on Urolithiasis European urology; 2008. p.1-128. 90. Mirzazadeh M, Nouran MG, Richards KA, Zare M. Effects of drinking water quality on urinary parameters in men with and without urinary tract stones. Urology 2012;79:501-7. 91. Schwartz BF, Schenkman NS, Bruce JE, Leslie SW, Stoller ML. Calcium nephrolithiasis: effect of water hardness on urinary electrolytes. Urology 2002;60:23-7. 92. Bellizzi V, De Nicola L, Minutolo R, Russo D, Cianciaruso B, Andreucci M, et al. Effects of water hardness on urinary risk factors for kidney stones in patients with idiopathic nephrolithiasis. Nephron 1999;81 Suppl 1:66-70. 93. Siener R, Jahnen A, Hesse A. Influence of a mineral water rich in calcium. magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. European journal of clinical nutrition 2004;58:270-6. 94. Institute of Medicine. Dietary Reference Intakes for water. potassium. sodium. chloride and sulfate Washington D.C.: The National Academies Press; 2005. p. 638. 95. Aptel I, Cance-Rouzaud A, Grandjean H. Association between calcium ingested from drinking water and femoral bone density in elderly women: evidence from the EPIDOS cohort. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 1999;14:829-33. 96. Dahl C, Søgaard AJ, Tell GS, Flaten TP, Hongve D, Omsland TK, et al. Nationwide data on municipal drinking water and hip fracture: could calcium and magnesium be protective? A NOREPOS study. Bone 2013;57:84-91. 97. Costi D, Calcaterra PG, Iori N, Vourna S, Nappi G, Passeri M. Importance of bioavailable calcium drinking water for the maintenance of bone mass in post-menopausal women. Journal of endocrinological investigation 1999;22:852-6. 98. Roux S, Baudoin C, Boute D, Brazier M, De La Guéronniere V, De Vernejoul MC. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers. The journal of nutrition. health & aging 2004;8:380-4. 99. Meunier PJ, Jenvrin C, Munoz F, de la Gueronnière V, Garnero P, Menz M. Consumption of a high calcium mineral water lowers biochemical indices of bone remodeling in postmenopausal women with low calcium intake. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2005;16:1203-9. 1136-4815/23/19-25 Alimentacion, Nutricion y Salud Copyright © 2016 Instituto Danone Alim. Nutri. Salud Vol. 23, N.º 1, pp. 19-25, 2016 La publicidad alimentaria dirigida a menores en España M. J. Bosqued Estefanía, L. López Jurado, Á. Moya Geromini, M. Á. Royo Bordonada ESCUELA NACIONAL DE SANIDAD. INSTITUTO DE SALUD CARLOS III. MADRID RESUMEN L ABSTRACT F a publicidad alimentaria de productos altamente energéticos y pobres en nutrientes influye en las preferencias, las peticiones de compra y los hábitos alimentarios de los menores, contribuyendo a la epidemia de obesidad y la aparición precoz de factores de riesgo de enfermedades crónicas. La OMS recomienda reducir el impacto negativo de la publicidad de alimentos y bebidas ricos en grasas, azúcares y sal en los hábitos alimentarios de los menores, actuando sobre el poder de las técnicas de marketing y los niveles de exposición. En España, pese a la existencia del código PAOS, regulador de la publicidad alimentaria dirigida a menores, en torno a dos tercios de los anuncios en horario infantil y más de la mitad de los que usan marketing nutricional son de productos altos en grasas, azúcares y/o sal. En la lucha contra la obesidad infantil y sus consecuencias conviene regular el contenido nutricional de la publicidad alimentaria dirigida a menores (al menos hasta 16 años) en todos los programas y horarios con una audiencia infantil significativa. ood advertising of energy-dense, nutrient-poor foods and beverages influences children´s food preferences, purchasing decisions and consumption patterns, helping to fuel the epidemic of obesity and the early development of diet-related non communicable diseases. The World Health Organization recommends lessening the negative impact on children´s food patterns of marketing of foods and beverages high in saturated fats, trans-fatty acids, sugars or salt by reducing both the exposure of children to, and power of, this kind of marketing. In Spain, despite the existence of the PAOS code, that regulates food advertising to children, around two thirds of the food advertisements aired in children´s viewing time and more than half of those using nutrition marketing refer to products high in fat, sugar or salt (less healthy foods). In the fight against childhood obesity and its consequences, it would be helpful to regulate the nutritional content of food advertising directed at children (at least under 16) during programs with a significant child-audience share. Palabras clave: Obesidad infantil. Publicidad alimentaria. Perfil nutricional. Marketing nutricional. Alegación de salud. Key words: Childhood obesity. Food advertising. Nutrient profile. Nutrition marketing. Health claim. INTRODUCCIÓN La infancia es una etapa clave en relación con la publicidad alimentaria por tres motivos principales. En primer lugar, hasta los 12 años la mayoría de niños todavía no son conscientes de la intención persuasiva de la publicidad y tienen dificultades para identificar los anuncios por Internet (1,2). En segundo lugar, la promoción intensa y generalizada de alimentos y bebidas altos en grasas saturadas, ácidos grasos trans, azúcares o sal (AGATAS) con técnicas de marketing cada vez más sofisticadas influye en las preferencias alimentarias, las solicitudes de compra y los hábitos de consumo de los niños (3). Y en tercer lugar se trata de una etapa determinante en la adquisición de hábitos alimentarios que, una vez instaurados, son muy resistentes al cambio (4). Las evidencias sobre la relación entre la presión publicitaria del sector de la alimentación por televisión y la obesidad infantil provienen de estudios ecológicos de correlación poblacional, como el llevado a cabo en EE. UU., Australia y varios países europeos (5), de estudios longitudinales, donde la exposición es el tiempo de consumo televisivo o el tiempo de exposición a contenidos comerciales (6) y, por último, de ensayos clínicos con intervenciones para limitar el tiempo que los niños ven la televisión, que lograron reducciones significativas en las cifras de obesidad asociadas a la reducción de la ingesta calórica y no a cambios en la actividad física (7,8). A partir de este tipo de evidencias se ha estimado que la publicidad puede explicar entre un 16 y un 40% de la obesidad infantil (9,10). 19 M. J. BOSQUED ESTEFANÍA ET AL. La obesidad en la infancia se asocia con hipertensión, dislipemia, diabetes, trastornos ortopédicos y problemas psicosociales. Además, los niños obesos tienen un mayor riesgo de padecer obesidad y enfermedades no transmisibles (ENT) en la vida adulta. En España, la obesidad infantil es un problema de salud pública de primera magnitud, pues su prevalencia se mantiene entre las más altas de Europa (11,12), con en torno a uno de cada tres menores en situación de sobrepeso (13). Con el fin de reducir el impacto negativo de la publicidad en los hábitos alimentarios de los niños, la OMS elaboró en 2010 un “Conjunto de recomendaciones sobre la promoción de alimentos y bebidas no alcohólicas dirigida a niños”, alentando a los Gobiernos a instaurar nuevas políticas o reforzar las existentes para conseguir dicho objetivo (14). Además, el control de la publicidad alimentaria constituye un área prioritaria de intervención del plan de acción de la Organización Mundial de la Salud para prevenir y controlar las ENT 2013-2020 (15). Dado que la eficacia de la publicidad de alimentos AGATAS depende de la frecuencia de exposición de los menores y del poder del mensaje, el objetivo general de las políticas deberá ir dirigido a limitar ambos componentes de esta. Por todo lo anterior, el estudio de la publicidad alimentaria dirigida a niños constituye un área de gran interés en salud pública desde las dos perspectivas señaladas por la OMS: la exposición, medida a través de estudios de la frecuencia de emisión de anuncios de productos AGATAS y estudios de audiencia infantil, y el poder, medido a través del uso de técnicas específicas de marketing, como el marketing nutricional. LA PUBLICIDAD DIRIGIDA AL PÚBLICO INFANTIL La OMS define la publicidad como «la presentación pública y promoción de ideas, bienes o servicios, pagada por un patrocinador que pretende dirigir la atención de los consumidores hacia un producto a través de una variedad de medios de comunicación tales como la televisión en abierto y por cable, radio, prensa escrita, vallas publicitarias, Internet, o contacto personal» (16). Los medios de comunicación son el vehículo que la publicidad precisa para llegar a los potenciales consumidores del producto. El medio más utilizado continúa siendo la televisión (3), por su rapidez de penetración, su flexibilidad geográfica y temporal, y la calidad del mensaje (impacto conseguido). Otra ventaja es que permite optar por diversas formas de publicidad: spot, publirreportaje, patrocinio, telepromoción, sobreimpresión, trueque y emplazamiento de producto. Los anunciantes a nivel general, y muy en particular la industria alimentaria, encuentran en los niños una población diana muy interesante. Varios estudios han puesto de manifiesto que la presión publicitaria de alimentos aumenta 20 ALIM. NUTRI. SALUD durante el tiempo de protección reforzada para la infancia (17,18) y durante la programación infantil (19). Los motivos que justifican el interés de la industria alimentaria por los niños son los siguientes: el elevado número de horas que estos pasan frente al televisor (20), su capacidad de gasto (mercado primario o directo), su influencia en las compras familiares, tanto de productos que ellos también consumen (mercado de influencia directa), como respecto de aquellos de los que no son consumidores pero sobre los que también opinan (influencia en mercados ajenos) y su papel como futuros consumidores (mercado futuro) (21). En definitiva, los niños son considerados un objetivo clave, como consumidores propiamente dichos y por su posición estratégica en el mercado presente y futuro (22). Un tema controvertido y de gran importancia a la hora de regular la publicidad dirigida a menores es el establecimiento del límite de edad por debajo del cual una persona es considerada niño o niña a estos efectos. Dependiendo de la legislación de cada país, este límite puede oscilar desde los 12 hasta los 18 años. La normativa española establece el límite en 12 años para la publicidad en medios audiovisuales y escritos (23) y en 15 años para la publicidad en Internet (24). MARKETING NUTRICIONAL El marketing nutricional (MN) se define como cualquier tipo de marketing de alimentos o bebidas mediante el uso de información nutricional o relativa a la salud más allá de los mínimos requerimientos exigibles por la normativa reguladora del etiquetado nutricional (25), atribuyéndoles determinados beneficios cuya veracidad, precisión, adecuación y conveniencia no siempre están debidamente contrastadas. Existen las siguientes modalidades de marketing nutricional (26): • Declaraciones nutricionales: alegación declarando, sugiriendo o implicando que un alimento tiene determinadas propiedades nutricionales beneficiosas debido a la energía (contenido calórico) que proporciona (valor energético bajo, reducido o sin aporte energético) y a los nutrientes que contiene en cantidades reducidas (contenido reducido, bajo, muy bajo), aumentadas (fuente, alto contenido, mayor contenido) o que no contiene (sin). • Alegaciones de salud: declaraciones explícitas sobre los efectos beneficiosos para la salud de un alimento. Se refieren al efecto de un ingrediente bioacti vo (nutricional o no) en la reducción del riesgo de una enfermedad (p. ej.: “ayuda a bajar el colesterol”), en el crecimiento y desarrollo normal de los niños o en las funciones corporales, psicológicas y comportamentales de las personas. • Grafismos sugerentes de producto saludable: utilización de colores asociados con el bienestar, como el verde, y de imágenes asociadas con la buena salud: Vol. 23, N.º 1, 2016 alimentos frescos, personajes de aspecto saludable, parajes naturales y elementos propios del ámbito rural o agrícola, especialmente asociados a aspectos tradicionales, caseros o artesanales. • Aval sanitario o científico: la presentación o publicidad del producto sugiere o hace constar de forma expresa el apoyo de profesionales de la salud, instituciones sanitarias o científicas, asociaciones de pacientes y similares. Estas estrategias publicitarias potencian el creciente interés sobre la relación entre la alimentación y la salud, de forma que los productos que recurren a ellas son percibidos por parte de la población como más saludables, influyendo así en sus opciones de compra. Sin embargo, con frecuencia, los productos que contienen declaraciones nutricionales o alegaciones de salud autorizadas muestran un perfil nutricional poco saludable, por tratarse de productos procesados con alta densidad energética, ricos en grasas, azúcares o sal y pobres en micronutrientes. Por ejemplo, determinados cereales ricos en vitaminas o productos lácteos bajos en grasa presentan, sin embargo, un perfil nutricional pobre por su alto contenido en azúcares o por su alta densidad energética (27-29). Las alegaciones de salud están sujetas a una regulación estricta para comprobar que existe evidencia científica suficiente que sustente los supuestos beneficios que se atribuyen al producto en cuestión. Lamentablemente, en ocasiones se realizan alegaciones de salud sin evidencia sólida que las sustente y sin la correspondiente aprobación del órgano competente, induciendo a confusión a los consumidores (30). Además del marketing nutricional, a continuación se relacionan otras técnicas que intensifican el poder de la publicidad alimentaria, algunas surgidas recientemente como consecuencia del desarrollo de los diferentes medios de comunicación: marketing por Internet (páginas web interactivas o integradas con otros medios, publicidad asociada a juegos y otro tipo de aplicaciones, redes de difusión, etc.), información llamativa en el envoltorio de los alimentos, publicidad subliminal a través de la inserción de productos (en programas de televisión y videojuegos), presencia de personajes de animación, patrocinios, promociones, premios y publicidad localizada en eventos y espacios de interés, como acontecimientos deportivos o colegios (25). Además, se han descrito llamamientos de marketing a los padres en productos dirigidos a niños a través de mensajes enfocados hacia la nutrición, el crecimiento, el éxito deportivo o la armonía familiar (22). REGULACIÓN DE LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES La Ley General de la Comunicación Audiovisual (ley 7/2010, de 31 de marzo) (31) tiene por objeto proteger al ciudadano de posiciones dominantes de opinión o LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES EN ESPAÑA de restricción de acceso a contenidos universales de gran interés o valor. Su artículo 7, relativo a los derechos del menor, establece las franjas horarias de protección reforzada (entre las 8 y las 9 horas y entre las 17 y las 20 horas los días laborables y entre las 9 y las 12 horas los sábados, domingos y festivos) y alienta a los prestadores de servicios de comunicación audiovisual a impulsar códigos de conducta en relación con la comunicación comercial inadecuada. La Ley de Seguridad Alimentaria y Nutrición (ley 17/2011, de 5 de julio) (32), en su capítulo VII “de la alimentación saludable, la actividad física y la prevención de la obesidad”, hace referencia a la puesta en marcha en 2005 de la estrategia NAOS, en respuesta a las recomendaciones de la Estrategia Mundial sobre Régimen Alimentario, Actividad Física y Salud. El capítulo VIII trata específicamente de “la publicidad de alimentos”. Dentro de este apartado se prohíbe la aportación de testimonios, así como la sugerencia de un aval de profesionales sanitarios o científicos (artículo 44), salvo que se trate de organizaciones, fundaciones o instituciones relacionadas con la salud y sin ánimo de lucro y que se comprometan a utilizar los recursos obtenidos en actividades que favorezcan la salud (investigación y divulgación). Además, se establece que los poderes públicos favorecerán el desarrollo de sistemas de regulación voluntarios (artículo 45) y que las autoridades competentes promoverán la firma de acuerdos de correlación con los operadores económicos y los prestadores de servicios de comunicación comercial audiovisual para el establecimiento de códigos de conducta que regulen las comunicaciones comerciales de alimentos y bebidas dirigidos a la población menor de 15 años (artículo 46). En España, dentro del marco de la estrategia NAOS, se aprobó en 2005 el código PAOS, de autorregulación de la publicidad de alimentos dirigida a menores de hasta 12 años (23). Este código establece los principios –normas éticas– que han de regir el diseño, la ejecución y la difusión de los mensajes publicitarios de las empresas que de forma voluntaria se adhieran y fija los mecanismos que garantizarán el control y aplicación de las normas a través de Autocontrol (asociación de las principales agencias publicitarias, medios de comunicación y anunciantes encargada de gestionar el sistema de autorregulación de la comunicación comercial en España). La adhesión de las cadenas de televisión nacionales y autonómicas al código PAOS en 2009 garantiza que sus normas éticas sean aplicables a todos los anuncios de alimentos y bebidas dirigidos a niños por televisión, independientemente de la adhesión o no de la compañía fabricante. En 2012, en respuesta a la Ley de Seguridad Alimentaria y Nutrición, se amplió el código PAOS a la publicidad por Internet dirigida a menores de 15 años (24). Sin embargo, se sigue manteniendo el límite de 12 años para regular la publicidad en medios audiovisuales e impresos, contraviniendo lo dispuesto en la ley (33). La Comisión Europea aprobó en 2006 el Reglamento (CE) nº 1924/2006 del Parlamento Europeo y del Consejo de 20 de diciembre de 2006, relativo a las declaraciones nutricionales y de propiedades saludables en los 21 M. J. BOSQUED ESTEFANÍA ET AL. alimentos (en adelante, el Reglamento) (34), con el objetivo de controlar los posibles efectos perjudiciales del empleo del marketing nutricional en los hábitos alimentarios y la salud de la población. El objetivo de este Reglamento es múltiple: proteger al consumidor frente a la propaganda engañosa o fraudulenta, armonizar la legislación en la unión Europea y controlar el buen funcionamiento de los mercados evitando desigualdades entre países. El Reglamento establece que sea la Autoridad Europea de Seguridad Alimentaria (EFSA) la encargada de validar, autorizar o rechazar las alegaciones presentadas sobre este tipo de alimentos. MAGNITUD Y NATURALEZA DE LA PUBLICIDAD ALIMENTARIA EN ESPAÑA Los resultados de un estudio de publicidad de alimentos por televisión en varios países, realizado entre octubre de 2007 y marzo de 2008 (35), revelaron que la publicidad alimentaria suponía entre el 11 y el 29% de la publicidad emitida y que entre el 53 y el 87% de los anuncios eran de productos con alto contenido en sal, grasa, azúcares añadidos y/o energía, siendo estos más frecuentes durante los picos de audiencia infantil. La presión comercial del sector de la alimentación en España, con una media de 6 comunicaciones comerciales de alimentos y bebidas (CCAB)/hora de emisión, se situó entre las más altas a nivel internacional. Además, la mayor parte de anuncios que utilizaban técnicas de marketing persuasivo eran de productos poco recomendables. De acuerdo con los resultados de un estudio realizado en 2008 por la organización de consumidores y usuarios (OCU), los niños españoles de 4 a 12 años están expuestos diariamente a un promedio de 22 anuncios de alimentos y bebidas, en su mayoría ricos en grasas saturadas, azúcar y sal (36). Los resultados de otro estudio promovido por la OCU en 2010 (19) pusieron de manifiesto que el 29% de los anuncios emitidos por televisión eran de alimentación y que esa cifra subía hasta el 34% en torno a los programas infantiles. Otro estudio realizado en España en 2008 sobre publicidad alimentaria por televisión en horario infantil analizó los productos anunciados con el modelo de perfil nutricional de Reino Unido (UKNPM), que se aplica en ese país para determinar qué productos pueden o no anunciarse para niños (37). Este modelo permite valorar la composición nutricional considerando los componentes saludables (fibra, proteínas y vegetales, fruta y frutos secos) y los menos saludables (energía, azúcares, grasa saturada y sodio) por cada 100 g de producto en su forma consumible. Con esos datos, se obtiene una puntuación global mediante un sencillo algoritmo que tiene en cuenta todos los componentes, en función de la cual se determina si el producto se considera saludable o menos saludable (38). Los resultados mostraron que el 59,7% de las CCAB emitidas dentro del horario infantil correspondían a productos de perfil nutricional menos saludable. Este porcentaje se incrementó hasta 22 ALIM. NUTRI. SALUD el 71,2% durante la franja de protección reforzada, lo que pone de manifiesto la incapacidad del código PAOS para reducir la exposición de los niños a la publicidad televisiva de productos AGATAS (Fig. 1). Los datos de este estudio también revelaron que el uso del marketing nutricional en España (30) es muy común (74%) y que más de la mitad de los productos que recurrieron a estas técnicas resultaron AGATAS, de acuerdo con el UKNPM (Tabla I). A partir de los datos previos y de los de los estudios de medición de audiencia infantil televisiva (20), se estima que un niño español de 7 a 12 años está expuesto a 12 CCAB diarias de productos AGATAS por televisión, lo que representa 4.380 impactos publicitarios al año de alimentos y bebidas cuyo consumo conviene evitar o minimizar para mantener un buen estado de salud. EVALUACIÓN DEL CÓDIGO PAOS Desde la entrada en vigor del Código PAOS en septiembre de 2005 y hasta el 31 de octubre de 2012, el Gabinete Técnico de Autocontrol ha emitido 2.979 consultas legales y copy advice® solicitados por anunciantes, agencias y televisiones, antes de su emisión. En el mismo periodo se han presentado 20 reclamaciones por infracciones del Código. En 2012, en relación a la publicidad alimentaria dirigida a niños en televisión, las consultas o copy advice® solicitados relativos al Código PAOS fueron 492 (39). Un estudio realizado en 2008 para evaluar el funcionamiento del Código PAOS (17) encontró que en torno a la mitad de los anuncios incumplían alguna norma, con cifras muy similares en las empresas adheridas (49,3%) y las no adheridas a él (50,8%) (Fig. 2), poniendo en cuestión su efectividad. En todo caso, el Código PAOS no regula la composición nutricional de los productos anunciados, por lo que un estricto cumplimiento de él tampoco garantiza una reducción de la exposición de los niños a anuncios de productos AGATAS. La ausencia de criterios nutricionales *Elaboración propia a partir de los datos de la referencia 37, con permiso de los autores. Fig. 1. Evaluación global de las comunicaciones comerciales de alimentos y bebidas (CCAB) emitidas en horario infantil y de protección reforzada según el perfil nutricional de Reino Unido (n = 486)*. Vol. 23, N.º 1, 2016 LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES EN ESPAÑA TABLA I USO DEL MARKETING NUTRICIONAL EN PRODUCTOS ANUNCIADOS POR TELEVISIÓN EN ESPAÑA Empleo de técnicas de marketing nutricional Muy común (74% de las comunicaciones comerciales de alimentos y bebidas) Técnicas de marketing nutricional más utilizadas Grafismo sugerente y alegaciones nutricionales Modelo de perfil nutricional de Reino Unido (UKNPM) El 55 % de los productos que recurren al marketing nutricional resultan AGATAS* Cumplimiento de declaraciones nutricionales y de salud Alto para las declaraciones nutricionales Bajo para las alegaciones de salud Los productos que más frecuentemente recurren al marketing nutricional Lácteos, pan, arroz, galletas y cereales de desayuno * Alto en grasas, ácidos grasos trans, azúcares y/o sal. en el Código PAOS contrasta con la inclusión, dentro del conjunto mínimo de indicadores de evaluación y seguimiento de la estrategia NAOS, de varios indicadores relativos a la magnitud y la composición nutricional de la publicidad alimentaria (40) (p. ej.: porcentaje de anuncios de productos AGATAS emitidos en televisión durante un día, en horario de protección del menor y de protección reforzada, en comparación con el total de anuncios de alimentos y bebidas). Porcentaje de anuncios Además, el Código PAOS no es aplicable en los programas que aun teniendo gran audiencia infantil en términos absolutos esta no sea mayoritaria, quedando por tanto fuera del marco regulatorio algunas franjas horarias con alta audiencia infantil. En este sentido, sendos estudios realizados en Reino Unido (41) y Canadá (42) revelan que la exposición de los niños a publicidad por televisión de productos A GATAS se ha mantenido constante pese al buen cumplimiento de las regulaciones que limitan ese tipo de publicidad, como consecuencia del aumento paralelo de la presión publicitaria en programas y franjas horarias no sujetas a restricciones. Por tanto, la regulación de la publicidad de productos AGATAS dirigida a niños ha podido producir el efecto perverso de un aumento de la exposición en los adultos. Adheridas No Adheridas Cumple Incumple Dudoso *Elaboración propia a partir de los datos de la referencia 17, con permiso de los autores. Fig. 2. Comparación respecto al cumplimiento del Código PAOS entre anuncios de empresas adheridas y no adheridas a él*. CONCLUSIONES Tal como hemos mencionado previamente, y de acuerdo con los resultados de una revisión sistemática publicada en 2013, la adherencia a códigos de regulación voluntarios puede no ser suficiente para disminuir el número de anuncios de productos AGATAS o para reducir la exposición de los menores a este tipo de publicidad (43). Por tanto, la regulación del valor nutricional es condición necesaria pero no suficiente para garantizar una reducción de la exposición de los niños a la publicidad por TV de alimentos AGATAS. Además, resulta imprescindible ampliar el término de publicidad dirigida a niños en cuanto al rango de edad, horarios de emisión y audiencia infantil en términos absolutos y no solo relativos como hasta ahora (44). Para mejorar los hábitos alimentarios de los menores se requiere abordar las causas que nos han llevado a rodearnos de un entorno alimentario poco saludable, dominado por productos procesados, altamente energéticos y promocionados de forma intensiva. Para ello es necesario implicar a la industria alimentaria (productos, precios, promoción), los Gobiernos (regulaciones y leyes, política fiscal, promoción de la salud) y la sociedad en su conjunto (comida tradicional, recuperación de hábitos) (45). En España, son necesarios más estudios dirigidos a recabar información sobre el impacto del Código PAOS en base a los indicadores de evaluación y seguimiento relativos a la magnitud y la composición nutricional de la publicidad alimentaria establecidos por la AESAN (2011). En conclusión, en la lucha contra la obesidad infantil y sus consecuencias resulta necesario, entre otras muchas cosas, revisar los sistemas actuales de regulación de la publicidad alimentaria y desarrollar normativas más restrictivas que atiendan a criterios nutricionales, más allá de los aspectos relativos a las técnicas de marketing ya contemplados en el Código PAOS. Además, para que las restricciones resulten eficaces para reducir la presión publicitaria dirigida a menores (al menos hasta 16 años) de productos AGATAS es imprescindible que se contemplen todos los programas y horarios con una audiencia infantil significativa, aun cuando 23 M. J. BOSQUED ESTEFANÍA ET AL. estos se emitan en cadenas generalistas y no estén específicamente dirigidos a niños● CORRESPONDENCIA: María José Bosqued Estefanía Escuela Nacional de Sanidad Instituto de Salud Carlos III Sinesio Delgado, 5 28029 Madrid e-mail: mjbosqued@isciii.es BIBLIOGRAFÍA 1. Carter OB, Patterson LJ, Donovan RJ, Ewing MT, Roberts CM. Children’s understanding of the selling versus persuasive intent of junk food advertising: Implications for regulation. Soc Sci Med 2011;72:962-8. 2. Blades M, Oates C, Li S. Children’s recognition of advertisements on television and on Web pages. Appetite 2013;62:190-3. 3. World Health Organization. Marketing of foods high in fat, salt and sugar to children: Update 2012-2013. Copenhagen, Denmark: WHO Regional Office for Europe; 2013 p. 1-34. Disponible en: http://www.euro.who.int/__data/assets/ pdf_file/0019/191125/e96859.pdf 4. Birch LL, Fisher JO. Development of Eating behaviors among children and adolescents. Pediatrics 1998;101(Supl. 2): 539-49. 5. Lobstein T, Dibb S. Evidence of a possible link between obesogenic food advertising and child overweight. Obes Rev 2005;6:203-8. 6. Zimmerman FJ, Bell JF. Associations of television content type and obesity in children. Am J Public Health 2010;100(2):334-40. 7. Robinson TN, Nited HEU, Has ST. Reducing children’s television viewing. JAMA 1999;282:1561-7. 8. Epstein LH, Roemmich JN, Robinson JL, Paluch RA, Winiewicz DD, Fuerch JH, et al. A randomized trial of the effects of reducing television viewing and computer use on body mass index in young children. Arch Pediatr Adolesc Med 2008;162(3):239-45. 9. Goris JM, Petersen S, Stamatakis E, Veerman JL. Television food advertising and the prevalence of childhood overweight and obesity: A multicountry comparison. Public Health Nutr 2010;13(7):1003-12. 10. Veerman JL, Van Beeck EF, Barendregt JJ, Mackenbach JP. By how much would limiting TV food advertising reduce childhood obesity? Eur J Public Health. 2009;19(4):365-9. 11. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 19802013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;6736(14):1-16. 12. OECD (2013), Health at a Glance 2013: OECD Indicators, OECD Publishing. Disponible en: http://dx.doi. org/10.1787/health_glance-2013-en 13. Sánchez-Cruz J-J, Jiménez-Moleón JJ, Fernández-Quesada F, Sánchez MJ. Prevalence of child and youth obesity in Spain in 2012. Rev Esp Cardiol. 2013;66(5):371-6. 14. World Health Organization. Set of recommendations on the marketing of foods and non-alcoholic beverages to children Geneva, Switzerland: World Health Organization; 2010 p. 1-16. Disponible en: http://whqlibdoc.who.int/publications/2010/9789241500210_eng.pdf 24 ALIM. NUTRI. SALUD 15. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 20132020;2013. Disponible en: http://apps.who.int//iris/bitstre am/10665/94384/1/9789241506236_eng.pdf 16. World Health Organization. A framework for implementing the set of recommendations on the marketing of foods and non-alcoholic beverages to children. WHO, Geneva, 2012. 17. Romero-Fernández MM, Royo-Bordonada MA, Rodríguez-Artalejo F. Compliance with self-regulation of television food and beverage advertising aimed at children in Spain. Public Health Nutr 2010;13:1013-21. 18. Pérez Pérez ML. Informe general sobre menores y televisión en Andalucía. Sevilla: Consejo Audiovisual de Andalucía; 2008. 19. Organización de Consumidores y Usuarios. Publicidad de alimentos en programas infantiles. Hay que cortar por lo sano. OCU-SALUD 2010;92:22-5. 20. Busquet J, Reinares P. La audiencia infantil de televisión en España. Ni tan escasa ni tan uniforme. Telos. 2009;81:12941. Disponible en: http://telos.fundaciontelefonica.com/ docs/2010/05/11/12240001_4_4_0.pdf 21. Aktas Arnas Y. The effects of television food advertisement on children’s food purchasing requests. Pediatr Int 2006;48:138-45. 22. Cairns BG, Angus K, Hastings G. The extent, nature and effects of food promotion to children: a review of the evidence to december 2008. Geneva, Switzerland: World Health Organization; 2009 p. 1-48. Disponible en: http://www.who.int/ dietphysicalactivity/Evidence_Update_2009.pdf 23. Ministerio de Sanidad y Consumo. Agencia Española de Seguridad Alimentaria. Código de Autorregulación de la Publicidad de Alimentos dirigida a menores, prevención de la obesidad y salud. Código PAOS. Madrid: Ministerio de Sanidad y Consumo; 2005. 24. Ministerio de Sanidad, Servicios Sociales e Igualdad. Código de corregulación de la publicidad de alimentos y bebidas dirigida a menores, prevención de la obesidad y salud (Código PAOS). Disponible en: http://www.naos.aesan.msssi.gob.es/ naos/ficheros/empresas/CODIGO_PAOS_2012.pdf 25. Colby SE, Johnson L, Scheet A, Hoverson B. Nutrition marketing on food labels. Journal of Nutrition Education and Behavior 2010;42:92-8. 26. Royo Bordonada MA. La alimentación y el consumidor. Madrid: Escuela Nacional de Sanidad. Instituto de Salud Carlos III; 2013. Disponible en: http://gesdoc.isciii.es/gesdoccontroller?action=download&id=06/11/2013-9d151ea05e 27. Jones SC, Andrews KL, Tapsell L, Williams P, McVie D. The extent and nature of «health messages» in magazine food advertising in Australia. Asia Pac J Clin Nutr 2008;17:317-24. 28. Harris JL, Thompson JM, Schwartz MB, Brownell KD. Nutrition-related claims on children’s cereals: What do they mean to parents and do they influence willingness to buy? Public Health Nutr 2011;2:1-6. 29. Dean M, Lähteenmäki L, Shepherd R. Nutrition communication: Consumer perceptions and predicting intentions. Proc Nutr Soc 2011;70:19-25. 30. Cuevas-Casado I, Romero-Fernández MM, Royo-Bordonada MÁ. Uso del marketing nutricional en productos anunciados por televisión en España. Nutr Hosp 2012;27:1569-75. 31. Boletín Oficial del Estado. Ley 7/2010, de 31 de marzo, General de la Comunicación Audiovisual; 2010 p. 30157–209. Disponible en: http://www.boe.es/boe/dias/2010/04/01/ pdfs/BOE-A-2010-5292.pdf 32. Boletin Oficial del Estado (2011) Ley 17/2011, de 5 de julio, de seguridad alimentaria y nutrición. Boletin Oficial del Estado n.º 160, 6 Jul 2011, sec. I, p. 71283. Disponible en: http:// www.boe.es/dias/2011/07/06/ pdfs/BOE-A-2011-11604.pdf 33. Royo-Bordonada MA. The Spanish experience of public-private partnerships with the drinks and food industries. - BMJ 2014;348:g1189. Vol. 23, N.º 1, 2016 34. Reglamento (CE) n.° 1924/2006 del Parlamento Europeo y del Consejo, de 20 de diciembre de 2006, relativo a las declaraciones nutricionales y de propiedades saludables en los alimentos. Diario Oficial de la Unión Europea, núm. 404 de 30 de diciembre de 2006. p. 9-25. 35. Kelly B, Halford JCG, Boyland EJ, Chapman K, Bautista-Castaño I, Berg C, et al. Television Food Advertising to Children: A Global Perspective. Am J Public Health 2010;100:1730-6. 36. Organización de Consumidores y Usuarios. Con la comida no se juega. OCU-SALUD. 2008;81:10-3. 37. Romero-Fernández MM, Royo-Bordonada MA, Rodríguez-Artalejo F. Evaluation of food and beverage television advertising during children’s viewing time in Spain using the UK nutrient profile model. Public Health Nutr 2013;16:1314-20. 38. Department of Health. Nutrient Profiling Technical Guidance 2011 p. 1-18. Disponible en: https://www.gov.uk/ government/uploads/system/uploads/attachment_data/ file/216094/dh_123492.pdf 39. Autocontrol. Autocontrol de la publicidad. Resultados balance actividad 2012. Madrid; 2013. Disponible en: http://www. autocontrol.es/pdfs/balance%2012%20AUTOCONTROL.pdf 40. Ministerio de Sanidad, Política Social e Igualdad. Evaluación y seguimiento de la Estrategia NAOS: conjunto mínimo de indicadores. Agencia Española de Seguridad Alimentaria y LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES EN ESPAÑA 41. 42. 43. 44. 45. Nutrición. Madrid: Ministerio de Sanidad, Política Social e Igualdad; 2011. Disponible en: http://www.naos.aesan. msps.es/naos/ficheros/investigacion/ documento_indicadores_en.pdf Adams J, Tyrrell R, Adamson AJ, White M. Effect of restrictions on television food advertising to children on exposure to advertisements for ‘less healthy’ foods: Repeat Cross-sectional study. PLoS ONE 2012;7:e31578. Kent MP, Wanless A. The influence of the children’s food and beverage advertising initiative: Change in children’s exposure to food advertising on television in Canada between 20062009. International Journal of Obesity 2014;38:558-62. Galbraith-Emami S, Lobstein T. The impact of initiatives to limit the advertising of food and beverage products to children: A systematic review. Obes Rev 2013;14:960-74. Harris JL, Sarda V, Schwartz MB, Brownell KD. Redefining “Child-Directed Advertising” to Reduce Unhealthy Television Food Advertising. American Journal of Preventive Medicine 2013;44:358-64. Swinburn B, Sacks G, Vandevijvere S, Kumanyika S, Lobstein T, Neal B, et al. INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support): Overview and key principles. Obes Rev 2013;14:1-12. 25