Download 8 ejer estad. resueltos
Document related concepts
Transcript
1.- Dadas las series estadísticas: 3, 5, 2, 7, 6, 4, 9. 3, 5, 2, 7, 6, 4, 9, 1. Calcular: La moda, la mediana y la media. La desviación media, la varianza y la desviación típica. Los cuartiles 1º y 3º. Los deciles 2º y 7º. Los percentiles 32 y 85. 3, 5, 2, 7, 6, 4, 9. Moda No existe moda porque todas las puntuaciones tienen la misma frecuencia. Mediana 2, 3, 4, 5, 6, 7, 9. Me = 5 Media Varianza Desviación típica Desviación media Rango r=9–2=7 Cuartiles Deciles 7 · (2/10) = 1.4 D2 = 3 7 · (7/10) = 4.9 D7 = 6 Percentiles 7 · (32/100) = 2,2 P32 = 4 7 · (85/100) = 5.9 P85 = 7 3, 5, 2, 7, 6, 4, 9, 1. Moda No existe moda porque todas las puntuaciones tienen la misma frecuencia. Mediana Media Varianza Desviación típica Desviación media Rango r=9–1=8 Cuartiles Deciles 8 · (2/10) = 1.6 D2 = 2 8 · (7/10) = 5.6 D7 = 6 Percentiles 8 · (32/100) = 2.56 P32 = 3 8 · (85/100) = 6.8 P85 = 7 2.- Una distribución estadística viene dada por la siguiente tabla: fi [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) 3 5 7 4 2 Hallar: La moda, mediana y media. El rango, desviación media y varianza. Los cuartiles 1º y 3º. Los deciles 3º y 6º. Los percentiles 30 y 70. xi fi Fi xi · fi |x − x | · fi xi2 · fi [10, 15) 12.5 3 3 37.5 27.857 468.75 [15, 20) 17.5 5 8 87.5 21.429 1537.3 [20, 25) 22.5 7 15 157.5 5 3543.8 [25, 30) 27.5 4 19 110 22.857 3025 [30, 35) 32.5 2 21 65 21.429 2112.5 457.5 98.571 10681.25 21 Moda Mediana Media Desviación media Varianza Desviación típica Cuartiles Deciles Percentiles 3.- Dada la distribución estadística: fi [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, ∞) 3 5 7 8 2 6 Calcular: La mediana y moda. Cuartil 2º y 3º. Media. xi fi Fi [0, 5) 2.5 3 3 [5, 10) 7.5 5 8 [10, 15) 12.5 7 15 [15, 20) 17.5 8 23 [20, 25) 22.5 2 25 6 31 [25, ∞) 31 Moda Mediana Cuartiles Media No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo. 3.- Completar los datos que faltan en la siguiente tabla estadística: xi fi 1 4 2 4 3 7 5 5 6 ni 0.08 16 4 7 Fi 0.16 0.14 28 38 7 45 8 Calcular la media, mediana y moda de esta distribución. Tabla Primera fila: F1 = 4 Segunda fila: F2 = 4 + 4 = 8 Tercera fila: Cuarta fila: N4 = 16 + 7 = 23 Quinta fila: Sexta fila: 28 + n8 = 38 n8 = 10 Séptima fila: Octava fila: N8 = N = 50 n8 = 50 − 45 = 5 xi fi Fi ni xi · fi 1 4 4 0.08 4 2 4 8 0.08 8 3 8 16 0.16 24 4 7 23 0.14 28 5 5 28 0.1 25 6 10 38 0.2 60 7 7 45 0.14 49 8 5 50 0.1 40 50 238 Media artmética Mediana 50/2 = 25 Me = 5 Moda Mo = 6 4.- Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide: 1. Calcular su media y su varianza. 2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media y varianza. xi xi2 2 4 3 9 4 16 6 36 8 64 10 100 33 229 1 2 5.- El resultado de lanzar dos dados 120 veces viene dado por la tabla: Sumas 2 3 4 5 6 7 8 9 10 11 12 Veces 3 8 9 11 20 19 16 13 11 6 4 1. Calcular la media y la desviación típica. 2. Hallar el porcentaje de valores comprendidos en el intervalo (x − σ, x + σ). xi fi xi · fi xi2 · fi 2 3 6 12 3 8 24 72 4 9 36 144 5 11 55 275 6 20 120 720 7 19 133 931 8 16 128 1024 9 13 117 1053 10 11 110 1100 11 6 66 726 12 4 48 576 120 843 6633 1 2 x − σ = 4.591 x + σ = 9.459 Los valores comprendidos en el intervalo (4.591, 9.459) son los correspondientes a las sumas de 5, 6, 7, 8 y 9. 11 + 20 + 19 + 16 + 13 = 79 6.- Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla: Altura [170, 175) [175, 180) [180, 185) [185, 190) [190, 195) [195, 2.00) Nº de jugadores 1 3 4 8 5 2 Calcular: 1. La media. 2. La mediana. 3. La desviación típica. 4. ¿Cuántos jugadores se encuentran por encima de la media más una desviación típica? xi fi Fi xi · fi xi2 · fi [1.70, 1.75) 1.725 1 1 1.725 2.976 [1.75, 1.80) 1.775 3 4 5.325 9.453 [1.80, 1.85) 1.825 4 8 7.3 13.324 [1.85, 1.90) 1.875 8 16 15 28.128 [1.90, 1.95) 1.925 5 21 9.625 18.53 [1.95, 2.00) 1.975 2 23 3.95 7.802 42.925 80.213 23 Media Mediana Desviación típica 4 x + σ = 1.866+ 0.077 = 1.943 Este valor pertenece a un percentil que se encuentra en el penúltimo intervalo. Sólo hay 3 jugadores por encima de x + σ. 7.- Los resultados al lanzar un dado 200 veces vienen dados por la siguiente tabla: fi 1 2 3 4 5 6 a 32 35 33 b 35 Determinar a y b sabiendo que la puntuación media es 3.6. xi fi xi · fi 1 a a 2 32 64 3 35 125 4 33 132 5 b 5b 6 35 210 135 + a + b 511 + a + 5b a = 29 b = 36 8.- El histograma de la distribución correspondiente al peso de 100 alumnos de Bachillerato es el siguiente: 1. Formar la tabla de la distribución. 2. Si Andrés pesa 72 kg, ¿cuántos alumnos hay menos pesados que él? 3. Calcular la moda. 4. Hallar la mediana. 5. ¿A partir de que valores se encuentran el 25% de los alumnos más pesados? 1 xi fi Fi [60,63 ) 61.5 5 5 [63, 66) 64.5 18 23 [66, 69) 67.5 42 65 [69, 72) 70.5 27 92 [72, 75) 73.5 8 100 100 2 5 + 18 + 42 + 27 = 92 alumnos más ligeros que Andrés. Moda Mediana 5 El valor a partir del cual se encuentra el 25% de los alumnos más pesados es el cuartil tercero. 8.- De esta distribución de frecuencias absolutas acumuladas, calcular: Edad Fi [0, 2) 4 [2, 4) 11 [4, 6) 24 [6, 8) 34 [8, 10) 40 1. Media aritmética y desviación típica. 2. ¿Entre qué valores se encuentran las 10 edades centrales? 3. Representar el polígono de frecuencias absolutas acumuladas. xi fi Fi xi · fi xi2 · fi [0, 2) 1 4 4 4 4 [2, 4) 3 7 11 21 63 [4, 6) 5 13 24 65 325 [6, 8) 7 10 34 70 490 [8, 10) 9 6 40 54 486 214 1368 40 Media y desviación típica 2 Los 10 alumnos representan el 25% central de la distribución. Debemos hallar P37.5 y P62.5. Las 10 edades centrales están en el intervalo: [4.61, 6.2] . Polígono de frecuencias