Download 7. La Red GNSS en apoyo al desarrollo nacional – IGM
Document related concepts
no text concepts found
Transcript
CENTRO DE INVESTIGACIÓN EN MODELAMIENTO AMBIENTAL CIMA UNIVERSIDAD POLITÉCNICA SALESIANA PROYECTOS DE INVESTIGACIÓN LÍNEAS Y PROYECTOS DE INVESTIGACIÓN-2015 Análisis del tiempo y clima, cambio climático y eventos extremos: Eventos extremos de radiación solar en Quito: relaciones con la temperatura y el Cambio Climático Eventos extremos de lluvia y temperature en Quito: un análisis de la variabilidad y el cambio climático. Sistemas complejos en el estudio de eventos extremos Transiciones de Fase Continuas y Criticalidad Auto-organizada en la precipitación lluviosa intensa. Energías renovables: Estudio y construcción de celdas solares tipo Grätzel con pigmentos naturales extraídos en el Ecuador Huella de carbono de cocina de inducción vs. cocina a gas. LÍNEAS Y PROYECTOS DE INVESTIGACIÓN-2015 Ecología y gestión de áreas protegidas “Biodiversidad y filogenia molecular de las moscas que visitan y polinizan orquídeas en los bosques nublados del noroccidente del Ecuador” Inventario florístico de la estación biológica de Cutucú y Aguarongo Desarrollo local sostenible “Calidad y Disponibilidad del agua de consumo humano bajo la gestión social del consejo de juntas del Proyecto Pesillo – Imbabura” Biotecnología Biorremediación de metales pesados con cianobacterias Biorremediación de aguas de desecho semindustrial con lodos activados Análisis de aceites esenciales de plantas del Cutucú contra patógenos vegetales. EXTREME EVENTS OF RAINFALL AND TEMPERATURE IN QUITO DM: AN ANALYSIS OF WEATHER VARIABILITY AND CLIMATE CHANGE Serrano Vincenti Sheila1 and Ruiz Jean Carlos 1,2 1Centro de Investigación en Modelamiento Ambiental CIMA-UPS/ Universidad Politécnica Salesiana/Red de Universidades Frente al Cambio Climático y Gestión de Riesgos, Quito, ECUADOR. sserranov@ups.edu.ec 2Escuela Politécnica Nacional/Red de Universidades Frente al Cambio Climático y Gestión de Riesgos, Quito, ECUADOR jeanka1991@hotmail.com Return periods with Generalized Extreme Value Distribution GEVD Figure 1 Behavior of annual maximum of daily maximum temperature (TXX) in Izobamba. Figure 2. TXX for GEVD Weibull type distribution. The first two upper graphs show the proper fit of the model, while the lower left and right graphs show the return periods with confidence limits of 95% (blue line) and the probability density distribution. Return period (años) Return level [ºC/day] Observed LI [ºC/ day] LS [ºC/ day] Return level [ºC/ day] PRECIS A2 LI [ºC/ LS [ºC/ day] day] Return level [ºC/ day] 23.36963 23.168 PRECIS B2 LI [ºC/ day] LS [ºC/ day] 2 22.8791 22.65201 23.11443 23.1338 22.91 5 23.4149 23.19866 23.63924 23.8073 23.55107 24.11327 23.9056 23.6147 7 23.6665 23.46282 23.97861 23.9998 23.73038 24.35424 24.1082 23.80774 24.50286 10 23.7811 23.58098 24.12967 24.1852 23.90059 24.6095 23.98782 24.76448 15 23.8516 23.65159 24.23066 24.3774 24.07368 24.90126 24.494 24.16744 25.05632 20 22.8791 22.65201 23.11443 24.5038 24.18515 25.08955 24.6195 24.28098 25.24379 24.2996 22.89782 23.44836 24.25052 Table 4. Return periods, return levels and confidence intervals at 95% for the actual data of maximum temperatures in Izobamba. Figure 3 Maximum (Up) and Minimun (Down) annual daily temperatures expected for the next 10 years in the DMQ, a) forecast using the trend observed with real data from the meteorological stations studied, b) forecast using the product of dynamic forcing trend calculated by PRECIS A2 scenario c) B2 scenario of PRECIS trend. Return Year period [years] 2 5 7 10 15 20 2014 2017 2019 2022 2027 2032 Return level [mm/da y] 58.7867 82.381 91.2272 100.9893 112.6984 121.4659 IL 95% SL 95% [mm/day] [mm/day] 52.3806 71.81226 78.53774 85.58649 93.54083 99.1595 66.39552 98.9752 113.82874 131.11258 152.2947 169.26421 Figure 6 Possible values of maximum daily precipitation forecast for the next 10 years in the DMQ. The figure shows the values of extreme events expected during this period, since Table 7 CONCLUSIONS The results show, that for the next 10 years, the DMQ south, will be possible find extreme events of 23.7ºC, and according to the A2 and B2 scenarios could be recorded 24.3 C and 24.2ºC respectively, ie. an eventual increase of about 10 west to 7º east over the average. While in the north-east, a warm region, it is possible to find extreme values up to 8ºC more than average. In the case of minimum temperatures is expected an increase of nearly 7 all over the region. In the case of the precipitation is not found a systematically forcing to suggest that its value increases or decreases, so were used a Fretchel distribution. In the south region which is the rainiest, is expected to register single events to up 100 mm/day, may register 156 mm/day. As for the northeast, can record maximum of 56.5 mm/day. It should be noted that in this area the rains are often scarce. Thus, it is important to note that, although this study predicts large magnitudes events, they have an occasional nature, but nonetheless must be taken into account by stakeholders and decision makers for proper planning. This research was funded by CDKN within the “Vulnerability Study of DMQ." And it was done under the direction of SEI Institute, and the collaboration of the Red de Unviersidades Frente al Cambio Climático. ACKNOWLEDGEMENTS Represented by EPN, PUCE and CIMA-UPS. It also appreciated the product manage-ment and validation of the Secretariat of the Environment of Illustrious Metropolitan District of Quito. We thank the data which came from INAMHI and MAE. EXTREME EVENTS OF SOLAR RADIATION IN QUITO: A RELATION WITH TEMPERATURE AND CLIMATE CHANGE Sheila Serrano Vincenti, Diana Zuleta and Cristina Lema Centro de Investigación en Modelamiento Ambiental CIMA-UPS/ Universidad Politécnica Salesiana/Red de Universidades Frente al Cambio Climático y Gestión de Riesgos, Quito, ECUADOR. sserranov@ups.edu.ec Solar radiation biological efects A 7% of total solar radiation is Ultraviolet (UV) with cumulative effects UVC (100-280 nm) which is very dangerous to living things and is completely absorbed by the atmosphere, the radiation UVB (280-315 nm) that comes in a small proportion to the surface because it is absorbed about 90% and can generate ridges, skin cancer, cataracts and pterygium, and which comes full to the earth's surface is UVA (315-400 nm) comes full to the earth which cause premature skin aging and darkening (Marin, 2007).(Benavides, 2010). Data and metodology Station Temporal Tumbaco Los Chillos Carapungo Cotocollao Belisario El Camal 7 7 7 7 7 7 Latitude 0°12'36'' S 0°18'00'' S 0°5'54'' S 0°6'28'' S 0°10'48'' S 0°15'00'' S Longitude 78°24'00'' 78°27'36'' 78°26'50'' 78°29'50'' 78°29'24'' 78°30'36'' W W W W W W Height 2331 2453 2660 2793 2835 2840 97,76 97,82 97,22 97,42 97,67 93,67 Table1. Available data of hourly solar radiation of REMMAQ (Red de Metropolitana de Monitoreo Atmosférico de Quito), the meteorological station location and the percentage of valid data are showed . HOURLY ANALYSIS: Intensity ()W/m2 Cotocollao - 2793msnm 1600 1400 1200 1000 800 600 400 200 0 2007 2008 2009 2010 2011 2012 2013 Fig. Typical hourly variation of the maximum values of solar radiation per year. It is seen as the maximum values are achieved in recent years DAILY ANALISIS Intensity (W/m2) Los Chillos - 2453msnm 1350 1250 1150 1050 950 850 750 650 The trends (all positive) of daily maximum solar radiation from 2007 to 2013. The highest value correspond to 16,53 W/m2.year, in the Chillos station. Station Tumbaco Los Chillos Carapungo cotocollao Belisario El Camal y = 0,0453x + 905,08 R² = 0,0633 trend (W/year) 10,91 16,53 8,322 15,22 6,64 12,41 p- value 9,37E-11 1,1569E-10 2,1037E-09 8,5827E-11 1,8225E-10 1,9858E-10 MONTHLY ANALYSIS y = 2,0932x + 1046,2 R² = 0,4068 1300 1250 1200 1150 1100 1050 1000 950 900 ENERO ABRIL JULIO OCTUBRE ENERO ABRIL JULIO OCTUBRE ENERO ABRIL JULIO OCTUBRE ENERO ABRIL JULIO OCTUBRE ENERO ABRIL JULIO OCTUBRE ENERO ABRIL JULIO OCTUBRE ENERO ABRIL JULIO OCTUBRE Intensity (W/m2) Los Chillos - 2453msnm 2007 2008 2009 2010 2011 2012 2013 Fig.4 presented maximal mensual values of Solar Radiation and Temperature, by station. Two stations are located in the valleys and have a higher average (and maximum) temperature, while others are located within the urban area of Quito. The correlation between these variables is evident R whose coefficients vary between 0,05 and 0,08. TEMPERATURE RELATION Global Solar Radiation and Temperature T 1350 28 1300 Intensity (W/m2) 29 27 1250 26 1200 25 1150 24 23 1100 22 1050 21 TUMBACO LOS CHILLOS CARAPUNGO BELISARIO RADIATION TEMPERATURE NOVIEMBRE SEPTIEMBRE JULIO MAYO MARZO ENERO NOVIEMBRE SEPTIEMBRE JULIO MAYO MARZO ENERO NOVIEMBRE SEPTIEMBRE JULIO MAYO MARZO ENERO NOVIEMBRE SEPTIEMBRE JULIO MAYO MARZO ENERO NOVIEMBRE SEPTIEMBRE JULIO MAYO MARZO 20 ENERO 1000 CAMAL Maximal mensual values of Solar Radiation and Temperature, by station. Two stations are located in the valleys and have a higher average (and maximum) temperature, while others are located within the urban area of Quito. The correlation between these variables is evident R whose coefficients vary between 0,77 and 0,78. Annual variation CONCLUSIONS Although solar radiation is proportional to the height, it becomes clear that in the studied data the most influential variable is the temperature. Likewise, it is interesting to observe that the maximum radiation values occur in the months of March that not only correspond to the equinoxes, but also the beginning of the rainy season in Quito. It is said that the water vapor drops amplified radiation as a magnifying glass for a few moments. This relates to the vernacular knowledge of hazard of the "sun of waters” (sol de aguas) referred to the sun that is received before a storm (pres. obs.). Finally, since the solar radiation is too sensitive to extreme temperature variability, it is important to consider, its health effects in the context of a pessimistic climate change scenario Gracias! Sheila Serrano Vincenti sserranov@ups.edu.ec