Download RESUMEN DE TRIGONOMETRÍA
Document related concepts
Transcript
RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice. El ángulo es positivo si lo medimos en sentido contrario al movimiento de las agujas del reloj y negativo en caso contrario. Positivo Negativo La unidad de medida de los ángulos es el Grado, que puede venir expresado de varias formas: Sistema sexagesimal: Un grado es la amplitud del ángulo resultante de dividir la circunferencia en 360 partes iguales. Cada grado tiene 60 minutos y cada minuto tiene 60 segundos. Grado radián: Es la amplitud del ángulo cuyo arco mide lo mismo que el radio. Toda la circunferencia mide 2π radianes. Las razones trigonométricas de un ángulo son números que caracterizan a cada ángulo y para definirlas (calcularlas) trazamos una perpendicular al lado hasta formar un triángulo rectángulo. DEFINIMOS seno, coseno y tangente de un ángulo de la siguiente manera: = • = • = • No importa en qué punto tracemos la perpendicular pues todos los triángulos que resulten son semejantes y los cocientes anteriores no varían. (Thales) De la misma manera y, para no confundirlas con las funciones inversas (arco sen; arco cos; arco tg), definimos cosecante, secante y cotangente de un ángulo de la siguiente forma: = • ; ● sec = ; ● = Tal y como los hemos definido y, dado que los catetos son siempre más pequeños que la hipotenusa, el seno y el coseno de un ángulo NUNCA pueden ser, en valor absoluto, mayores que la unidad. Además podemos observar que así definidos se verifica que • = Si en el triángulo anterior calculásemos las razones trigonométricas del otro ángulo agudo que llamaremos β , observaríamos que, como el cateto contiguo a α es opuesto a β y el cateto opuesto a α es contiguo a β resulta que: = cos ! ; • = ! y Donde α y β son complementarios. Es decir: α + β = 90º = ! Cálculo de las razones trigonométricas de distintos ángulos Para hacer más sencillo el cálculo de las RT de los diferentes ángulos utilizaremos la Circunferencia Goniométrica, que es una circunferencia de radio la unidad y centrada en el origen de coordenadas. La circunferencia queda así dividida en cuatro partes I, II, III, IV, llamadas cuadrantes de forma que: ∈ #$%& $ ' ($ ∈ ∈ ∈ ' ( ' ($ $ $ ' ($ ' $ ' ($ )*+ → 0° ≤ ∝ ≤ 90° )**+ → 90° ≤∝≤ 180° )***+ → 180° ≤∝≤ 270° )*6+ → 270° ≤∝≤ 360° En la circunferencia goniométrica, cuando vamos trazando los ángulos, al construir el triángulo, la hipotenusa es el radio de la circunferencia que mide uno. Por lo que en este caso y, SOLAMENTE EN ESTE CASO, el seno coincide con el cateto opuesto (y) y el coseno, con el cateto contiguo (x). Como el centro de la circunferencia es el origen de coordenadas, es fácil ver que: en el primer cuadrante tanto el seno como el coseno son positivos; en el segundo cuadrante, el seno es positivo y el coseno negativo; en el tercer cuadrante, ambos son negativos y en el cuarto cuadrante, el seno es negativo y el coseno es positivo Si conocemos las razones trigonométricas de los ángulos del primer cuadrante (agudos), podemos calcular las de ángulos de los otros cuadrantes, relacionándolas con las del 1º basándonos en la semejanza de triángulos. Así podemos afirmar que: • Si α Є 2º cuadrante 9cos = )180° − + = − cos)180° − +; = − )180° − + )180° − + ∈ 1º ' ($ • • Si Si α α Є 3º cuadrante Є 4º cuadrante 9 cos =− ) − 180°+ = − cos) − 180°+ ; = ) − 180°+ =− )360° − + 9 cos = cos)360° − + ; = − )360° − + ) − 180°+ ∈ 1º ' ($ )360° − + ∈ 1º ' ($ Ecuación fundamental de la trigonometría. Si escribimos las razones trigonométricas del ángulo α del triángulo de la figura, tenemos: cos = = > → = ∙ → ? = ∙ cos Aplicando Pitágoras c2 = a2+ b2 y sustituyendo: C2 = (c senα)2 + (c cosα)2 c2 = c2 sen2α + c2 cos2α c2 = c2(sen2α + cos2α) Dividiendo por c2 • sen2α + cos2α = 1 Que es la Ecuación fundamental de la trigonometría y nos permite conocer el seno o el coseno de un ángulo, conocido el otro. Ejemplos: 1.- Si sen α = 0,25 y α Є al 1º cuadrante, calcula las restantes razones trigonométricas. (0,25)2 + cos2α =1 0,0625 + cos2α =1 cosα = ±A0,9375 = ±0,9682 Como α Є al 1º cuadrante determinación negativa de la raíz. cos2α = 1-0,0625= 0,9375 el coseno es positivo por lo que desechamos la cos α =0,9682 = D,GHIE = 0,2582 D,EFDD tgα= = = D,EF = 4 ; sec = = D,GHIE = 1,033; = = D,EFIE = 3,8730 2.- Sabiendo que sen25° = 0,423 y cos25° = 0,906. Hallar las razones trigonométricas de 65° Como 25°+ 65° = 90º sen 65° = 0,906 son complementarios por lo que: y cos 65° = 0,423 Tabla resumen de razones trigonométricas de algunos ángulos 30° 1 2 √3 2 √3 3 0° sen α 0 cos α 1 tg α 0 45° √2 2 √2 2 60° √3 2 1 2 √3 1 90° 180° 270° 360° 1 0 -1 0 0 -1 0 1 ∞ 0 ∞ 0 De esta manera, si conocemos el ángulo conocemos sus razones trigonométricas y viceversa: si conocemos la razón trigonométrica podemos conocer el ángulo, por ejemplo: ¿Cuál es el seno de 30º? Respuesta: E E ¿Cuál es el ángulo cuyo seno vale ? Respuesta: 30º ¿Cuál es el ángulo cuya tangente vale 1? Respuesta: 45º EJERCICIOS 1º) Sabiendo que cos α=- 0,5735 y que 90º < α <180º. Calcular las restantes razones trigonométricas del ángulo α Sustituyendo en la ecuación fundamental de la trigonometría: sen2α + cos2α = 1 sen2α+ (-0,5735)2 =1 sen2α = 1-(-0,5735)2 =1-0,3289=0,6711 sen2α = 1-(-0,5735)2 sen α =±√0,6711 +0,8192 Como α ∈ 2º cuadrante, el seno es positivo por lo que desechamos la determinación negativa de la raíz. sec = = = = = = D,I GE LD,FMNF = = −1,4284 D,I GE LD,FMNF = 1,2207 = −1,7436 = −0,700 2º) Expresa en radianes todos los ángulos de la tabla resumen. 30º= O H ; 45º= O P ; 60º= O N ; 90º= O E ; 180º= π; 270º= NO E 3º) Sabiendo que tg α = 2, y que 180º < α <270°. Calcular las restantes razones trigonométricas del ángulo α. Tenemos que resolver un sistema de 2 ecuaciones con 2 incógnitas Q =2 + E 4 ∙ cos E + E → ; =1 → E = 2 ∙ cos E + =1 )2 ∙ cos =1 → 5 +E =1 → E Como α ∈ 3º cuadrante, el coseno es negativo = 2 ∙ cos √F cosec α= − ; E = 2 ∙ T− √F U F = − sec α=−√5; = E F → = ±S − F √F F E √F F E cotgα= 4º) Comprueba si es cierta la siguiente igualdad. + = ∙ Operando en un miembro tenemos que llegar al otro cos = + cos sen ∙ = ∙ + cos ∙ ∙ cos + ∙ E = E = 1 ∙ = 1 ∙ 1 la igualdad es cierta 5º) De un triángulo rectángulo ABC, se conocen a = 6 m y b = 4 m. Resolver el triángulo. Resolver un triángulo consiste en calcular todos sus ángulos y todos sus lados Por Pitágoras: c2=a2+b2 = E√ N α será el ángulo cuyo seno vale calculadora (shift sin-1) obteniendo Como H = H√ N E∙ N = c2=36 + 16=52 N√ N N = cos ! c= √52= 2√13 N√ N . Como no está en la tabla, lo buscamos con la N α=56,31º=56º18´36´´ α y β son complementarios, β= 90º - α = 90º - 56,31º = 33,69º=33º41´24´´ 6º) Calcular el área de una parcela triangular, sabiendo que dos de sus lados miden 80 m y 130 m, y forman entre ellos un ángulo de 70°. h=80 sen 70º =75,17m S= ND∙ E =4886,40m2