Download a comprehensive approach in identifying sources of contamination
Document related concepts
Transcript
A COMPREHENSIVE APPROACH IN IDENTIFYING SOURCES OF CONTAMINATION, UNDERSTANDING WATER QUALITY PERCEPTION, AND TRANSLATING INFORMATION THROUGH COMMUNITY OUTREACH IN THE UPPER GILA WATERSHED IN CLIFTON, ARIZONA by Berenise Rivera ____________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF SOIL, WATER AND ENVIRONMENTAL SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2014 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Berenise Rivera, titled A Comprehensive Approach in Identifying Sources of Contamination, Understanding Water Quality Perception, and Translating Information through Community Outreach in the Upper Gila Watershed in Clifton, AZ and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________________ Date: April 14, 2014 Dr. Channah Rock _______________________________________________________________________ Date: April 14, 2014 Dr. Raina Maier _______________________________________________________________________ Date: April 14, 2014 Dr. Charles P. Gerba Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ________________________________________________ Date: April 14, 2014 Dissertation Director: Dr. Channah Rock 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Berenise Rivera 4 ACKNOWLEDGEMENTS I would like to thank all the people that have played a role in my educational and career decisions. I would like to extend my gratitude to Dr. Rock for giving me the opportunity to pursue my passion, encouragement, and advice. 5 DEDICATION I would like to dedicate this to my mother Trinidad Estela. Mamá muchas gracias por tu amor incondicional, apoyo, y palabras de sabiduría que me ayudaron a sobresalir. Me distes las fuerzas para terminar y tanto yo como usted lo hemos logrado. To my husband Shawn, who has been very supportive from the day we met. Thank you for all your unconditional love, support, and encouragement. To all whom believed in me, inspired me and provided words of encouragement. 6 TABLE OF CONTENTS ABTRACT……………………………………………………………………………….11 CHAPTER 1: INTRODUCTION……………………………………………………….13 CHAPTER 2: PRESENT STUDY……………………………………………………....24 REFERENCES ………………………………………………………………………… 25 CHAPTER 3: DISSERTATION FORMAT…………………………………………….28 APPENDIX A: USE OF BACTEROIDES MICROBIAL SOURCE TRACKING IN THE SAN FRANCISCO RIVER, ARIZONA………………………………………………..29 Abstract…………………………………………………………………………..30 Introduction……………………………………………………………………....31 Microbial Detection Methods……………………………………………………34 Molecular Methods………………………………………………………………35 Results and Discussion...…………………………………………………………40 Conclusions………………………………………………………………………44 References………………………………………………………………………..47 APPENDIX B: USE OF SURVEY METHODS TO ENHANCE WATERSHED EDUCATION OF MINORITY POPULATIONS IN CLIFTON, AZ………………….57 Abstract…………………………………………………………………………..58 Introduction……………………………………………………………………...59 Background……………………………………………………………………....61 Materials and Methods…………………………………………………………..62 Results and Discussion…………………………………………………………...63 Challenges and Recommendations……………………………………………....72 Conclusions……………………………………………………………………....73 References…………………………………………………………………….....76 APPENDIX C: MICROBIAL SOURCE TRACKING: WATERSHED CHARACTERIZATION AND SOURCE IDENTIFICATION .……………………….78 Water Quality and Fecal Contamination………………………………………...78 Fecal Coliform and Escherichia coli…………………………………………….79 What is Microbial Source Tracking?..…………………………………………...82 What MST Methods are currently being used? …………………………………83 What is Bacteroides? ……………………………………………………………85 7 TABLE OF CONTENTS-CONTINUED MST Supporting Watershed Characterization and Source Identification in Arizona………………………………………………………………………….88 References………………………………………………………………………91 APPENDIX D: SEGUIMIENTO DE ORIGEN MICROBIANO: CARACTERIZACION DE CUENCAS E IDENTIFICACION DE ORIGEN………………………………....104 La Calidad del Agua y Contaminación fecal…………………………………...104 Coliformes fecales y Escherichia coli ................................................................105 ¿Qué es el Seguimiento de Origen Microbiano? ……………………………....108 ¿Qué métodos del SFM se están utilizando en la actualidad? ………………....110 ¿Qué es Bacteroides? …………………………………………………………..112 SFM Apoya Caracterización de Cuencas e identificación de fuentes en Arizona………………………………………………………………………….115 Referencias……………………………………………………………………...118 APPENDIX E: WATER QUALITY, E. COLI AND YOUR HEALTH………………131 What is Water Quality?.………………………………………………………...131 What is E. coli? ………………………………………………………………...131 E. coli in our Water……………………………………………………………..133 How do we make sure our water is safe?……………………………………….135 What can you do in your community to protect water quality………………….137 References……………………………………………………………………....139 APPENDIX F: LA CALIDAD DEL AGUA, E. COLI Y SU SALUD………………..144 ¿Qué es la calidad del Agua?...............................................................................144 ¿Qué es E. coli?....................................................................................................144 E. coli en el agua………………………………………………………………..146 ¿Cómo nos aseguramos de que nuestra agua es segura?......................................150 ¿Qué puede hacer en su comunidad para proteger la calidad del agua?.............153 Referencias……………………………………………………………………...154 APPENDIX G: RAW DATA FOR APPENDIX A……………………………………159 8 LIST OF TABLES APPENDIX A: USE OF BACTEROIDES MICROBIAL SOURCE TRACKING IN THE SAN FRANCISCO RIVER, ARIZONA Table 1. PCR Primers and Reactions Conditions………………………………..50 Table 2. Quantitative PCR Real-Time Conditions………………………………51 Table 3. The Correlation (p-values) between E. coli concentrations and Bacteroides molecular markers for each site…………………………...56 APPENDIX B: USE OF SURVEY METHODS TO ENHANCE WATERSHED EDUCATION OF MINORITY POPULATIONS IN CLIFTON, AZ Table 1. Survey Topics…………………………………………………………..63 Table 2. The distribution of respondents regarding poor water quality…………70 APPENDIX C: MICROBIAL SOURCE TRACKING: WATERSHED CHARACTERIZATION AND SOURCE IDENTIFICATION Table 1. Common Types of MST Methods ……………………………………..94 Table 2. Commonly Used Terms ………………………………………………..95 APPENDIX D: SEGUIMIENTO DE ORIGEN MICROBIANO: CARACTERIZACION DE CUENCAS E IDENTIFICACION DE ORIGEN Tabla 1. Tipos comunes de métodos de seguimiento de fuente microbiana (SFM)……………………………………………………………..........121 Tabla 2. Términos de uso general………………………………………………122 APPENDIX E: WATER QUALITY, E. COLI AND YOUR HEALTH Table 1. Harmful strains of E. coli……………………………………………..142 Table 2. Level of E. coli permitted for Different Types of Water……………..143 APPENDIX F: LA CALIDAD DEL AGUA, E. COLI Y SU SALUD Tabla 1. Cepas dañinas de E. coli………………………………………………157 Tabla 2. Niveles de E. coli permitidos para los diferentes tipos de agua………158 APPENDIX G: RAW DATA FOR APPENDIX Table 1. Raw Data from the San Francisco River……………………………...159 9 LIST OF FIGURES APPENDIX A: USE OF BACTEROIDES MICROBIAL SOURCE TRACKING IN THE SAN FRANCISCO RIVER, ARIZONA Figure 1. San Francisco River Watershed Sampling Sites……………………….49 Figure 2. Average E. coli Concentrations Per Location (n=70)………………….52 Figure 3. Boxplot of Allbac concentrations of the San Francisco River………...53 Figure 4. Boxplot of HF183 concentrations of the San Francisco River...............54 Figure 5. Boxplot of CowM2 concentrations of the San Francisco River……….55 APPENDIX B: USE OF SURVEY METHODS TO ENHANCE WATERSHED EDUCATION OF MINORITY POPULATIONS IN CLIFTON, AZ Figure 1. Water Quality Rating of the local river………………………………..64 Figure 2. Respondents’ attitudes (%) of general water quality in the San Francisco River………………………………………………………..67 Figure 3. Respondents’ opinions (%) on how much of a problem the following sources are in the San Francisco River………………………………..69 Figure 4. Ways used by residents (%) to get information about water quality….72 APPENDIX C: MICROBIAL SOURCE TRACKING: WATERSHED CHARACTERIZATION AND SOURCE IDENTIFICATION Figure 1. Waterborne transmission of pathogens.……………………………….96 Figure 2. Relationship between indicators and pathogens……………………….97 Figure 3. Visualization of a fecal contaminated water sample; cells fluorescing blue indicate the presence of E. coli in the water…...…………………98 Figure 4. PhD student, Berenise Rivera, demonstrates sterile technique while assaying water samples for fecal bacteria……………………………..99 Figure 5. DNA Extraction/Concentration………………………………………100 Figure 6. Volunteer water quality monitoring team receives training from UA Cooperative Extension……………………………………………….101 Figure 7. Volunteer water quality monitoring in the Santa Cruz River, AZ…...102 Figure 8. Environmental water samples collected in the field………………….103 APPENDIX D: SEGUIMIENTO DE ORIGEN MICROBIANO: CARACTERIZACION DE CUENCAS E IDENTIFICACION DE ORIGEN Figura 1. Transmisión de agentes patógenos a través del agua…………………123 Figura 2. Relación entre los indicadores y patógenos…………………………..124 Figura 3. Visualización de una muestra de agua contaminada con material fecal Células azules fluorescentes indican la presencia de E. coli en el agua………………………………………………………………...125 10 LIST OF FIGURES-CONTINUED Figura 4. Estudiante de doctorado, Berenise Rivera, demuestra una técnica estéril mientras analiza muestras de agua para las bacterias fecales….126 Figura 5. Extracción/Concentración de ADN………………………………….127 Figura 6. Voluntarios del equipo de monitoreo de calidad del agua reciben entrenamiento organizado por personal de Extensión Cooperativa de la UA……………………………………………………………....128 Figura 7. Voluntario de monitoreo de calidad del agua en el Río Santa Cruz, Arizona……………………………………………………………….129 Figura 8. Muestras de agua ambientales colectadas en el campo………………130 APPENDIX E: WATER QUALITY, E. COLI AND YOUR HEALTH Figure 1. E. coli…………………………………………………………………141 APPENDIX F: LA CALIDAD DEL AGUA, E. COLI Y SU SALUD Figura 1. E. coli…………………………………………………………………156 11 ABSTRACT As of 2010, there are approximately twenty one surface water locations classified as impaired for Escherichia coli (E. coli) contamination in the State of Arizona. Of note is the San Francisco River (SFR) which is currently listed on the US EPA 303d list of impaired waters due to E. coli bacteria present at higher concentrations than the US EPA standards for partial- and full-body contact. In 2010-2011 surface water samples were collected at sites within the impaired region to monitor E. coli and areas known for heavy recreational uses. Of 70 samples collected over 1 year, 81% were positive for universal Bacteroides marker (Allbac). Of the 57 Allbac-positive samples, 68% show contributions of the human-specific marker and 60% were positive for bovine-specific marker. While 28% of the total samples assayed showed elevated levels of E. coli (>235 MPN/100mL), there were minimal significant correlations between Bacteroides and generic E. coli across all samples. While this information is significant, past research has suggested that successfully distinguishing the sources of fecal contamination will not alone reduce or eliminate disease associated with contaminated water unless these investigations are coupled with public outreach and education. With this in mind a survey was developed to gather information about water quality perceptions, water use, peoples’ attitudes, knowledge, and behaviors related to the water resources in Clifton, AZ. Survey questions consisted of multiple choice and Likert scales questions and were provided in both English and Spanish and were conducted during the summer of 2012 and winter of 2013. A total of 12 150 surveys were deployed with 38 surveys completed for a response rate of 25%. Our study findings indicate mixed attitudes on water quality with 80% reporting the SFR has poor water quality for drinking and 39% agree the SFR has poor water quality for swimming. Yet, 84% consider the river safe enough for picnics and activities near the water. Also, it was interesting to note participants’ opinions regarding consequences of poor water quality with 66% of respondents indicating that they are concerned with poor water quality and their health. Clifton is a very tight knit community so it was not unexpected that the majority of the respondents (61%) get water quality information by having conversations with other people and 68% from newspapers, factsheets and brochures. Based on the survey responses, our team worked to develop two peer reviewed Extension publications entitled; Microbial Source Tracking: Watershed Characterization and Source Identification (Arizona Cooperative Extension, #AZ1547) and Water Quality, E. coli, and Your Health (#AZ1624). Publications have been developed in both English and Spanish and will be part of future outreach to this and other Arizona communities. It is our goal that these survey findings can be used to better tailor outputs appropriate for the targeted audience, namely the local Hispanic population. These results are important because they add to understanding perceptions of water quality and health risks in this rural community; and can lend towards enhanced outreach practices in other similar communities. 13 CHAPTER 1: INTRODUCTION Indicator Bacteria The use of bacteria as indicators for water quality dates back as far as 1880 (Ashbolt et al., 2001). Today, microbial indicators help determine the potential presence or absence of pathogens, therefore minimizing possible health risks related with diseasecausing bacteria (Scott et al, 2002). In polluted water, coliform bacteria are found in densities roughly proportional to degree of fecal pollution. E. coli are fecal coliforms that have been used as microbial indicators to show presence or absence in water systems (Parveen et al., 2001). In addition, E. coli can be easily distinguished from other members of the fecal coliform group and is more likely to indicate fecal pollution. However, numerous warm-blooded animals discharge fecal coliforms; therefore, humans are not solely responsible for fecal coliforms found in water (Buchan et al., 2001, Field et al, 2007). Consequently, fecal coliform presence in water is not explicit to human sources of pollution. There are certain microbial populations associated with the intestines of particular animal types. Some factors influence the composition of the microbiota of the gastrointestinal tract of host species. Some of these factors are constrained by the host anatomical and physiological conditions such as diet, microbe-microbe interactions and host-microbe interactions. Several traditional methods have been used to determine sources of pollution: e.g., antibiotic resistance patterns, phage susceptibility, or fecal coliforms to fecal streptococci (FC/FS ratios). For the FC/FS ratio method, a ratio greater than or equal to 4.0 would indicate human fecal pollution, while a ratio below 7.0 is linked with animal 14 fecal pollution (Scott et al., 2002). These ratios vary on the diets of individuals and environmental factors such as temperature and ultra-violet light, which decrease the survival of coliforms and streptococci bacteria. As a result, the use of FC/FS has decreased in the last twenty years (Simpson et al., 2002). There have been several attempts to differentiate between human and nonhuman sources of fecal coliforms in a body of water; these attempts have been ineffective; therefore, molecular-based techniques are under development with the intent to differentiate among the associated strains of E. coli (Buchan et al., 2001). Limitations of Indicator Bacteria. Monitoring for all waterborne pathogens in surface water is currently unfeasible due to plethora of pathogens that are known to be present in fecal waste (e.g. viruses, bacteria, and protozoa). In addition, to monitor all pathogens would be time consuming and expensive (Field and Samadpour, 2007). Existing methods required for concentrating and analyzing pathogens, yet monitoring for only one or a handful of pathogens may give rise to a false impression of safety if pathogens other than those being tested are present (Hardwood et al, 2013). Some limitations of indicator bacteria: First, epidemiology studies were based on exposure to human fecal contamination, not animal; therefore we don’t know the risk from exposure to similar levels of animal fecal contamination. Secondly, fecal indicators such as E. coli and Enterococcus spp. can survive and proliferate in the environment in many environments (Harwood et al, 2013). Lastly, E. coli and enterococci are not well correlated with many pathogens and tests do not distinguish the source of fecal contamination. Despite these limitations, it is a standard practice to monitor fecal 15 indicator bacteria such as total and fecal coliforms, E. coli and fecal enterococci in water (Field and Samadpour, 2007). What is Bacteroides? Bacteroides is a genus of anaerobic fecal bacteria that are abundant in the gut of mammals. Although Bacteroides is present in feces at higher concentrations than indicator bacteria, cultivation of these bacteria is difficult and time consuming because they are anaerobic. Members of the genus Bacteroides form a coherent phylogenetic cluster within the Cytophaga-Flexibacter-Bacteroides (CFB) phylum. Smith et al 2006 state, the genus Bacteroides falls within the family of Bacteroidaceae of the proposed Order “Bacteroidales” of the proposed Class “Bacteroidetes”. The taxonomy of Bacteroides has undergone major reviews but the genus includes Bacteroides fragilis, B. thetaiotaomicron, B. ovatus, B. uniformis, B. vulgatus, B. distasonis, B. eggerthii, B. caccae, B. merdae, and B. stercoris just to name a few of the more than 20 identified species (Smith et al, 2006 and Wexler, 2007). The Bacteroides species are gramnegative, nonspore-forming, bile-resistant, nonmotile, anaerobic rods normally found and isolated from the gastrointestinal tract (GI-tract) of humans and animals (Smith et al., 2006 and Wexler, 2007). The human colon has the largest population of bacteria up to 1011 organisms per gram of wet weight and the majority of these organisms are anaerobes which consist of approximately 25% Bacteroides species (Wexler, 2007). Fecal members of the Bacteroidales group are plentiful in the feces of warm-blooded animals and members of this order are host- or group- specific (Field et al., 2005). The Bacteroidales group comprises a large portion of the normal gut flora of most animals including 16 bovines, and contains subgroups that are closely related to other animal hosts such as swine, horses, and humans (Shanks et al., 2010). The large quantity of this bacterium has allowed for host-specific analysis targeting the Bacteroides gene. Layton et al. (2006) states that bacteria belonging to the Bacteroides group have been recommended as an alternative fecal indicator to E. coli or fecal coliforms because they make up a considerable portion of the fecal bacterial population, have little potential for growth in the environment, and have a high degree of host specificity that reveal the differences in host digestive systems. The possible sources of fecal contamination can be arranged into two groups: 1) point sources, which consist of raw and treated sewage leakage and 2) nonpoint sources, which are agricultural and natural sources (Okabe et al., 2007). The ability to differentiate between sources of fecal pollution is essential for the accurate assessment of human health risks associated with exposure and to ensure waters are safe for human use. Ecology and Habitat. The Bacteroides species are obligate host-associated organism commonly found in the gastrointestinal tract of humans and other mammals (Smith et al, 2006). As members of the hosts’ flora, they play an array of roles that contribute to normal intestinal physiology and function. Some of these beneficial functions include polysaccharide breakdown. Polysaccharides comprise the most abundant biological polymer therefore being the most abundant food source (Wexler, 2007). Carbohydrate fermentation by Bacteroides and other intestinal bacteria result in the production of a pool of volatile fatty acids that are reabsorbed through the large 17 intestine and utilized by the host as an energy source, providing a significant proportion of the host’s daily energy requirement. Bacteroides species have the ability to utilize the nutrients at hand by utilizing simple and complex sugars and polysaccharides for growth. Another beneficial component is nitrogen cycling. The central features of Bacteroides nitrogen metabolism relate directly to their dependency on ammonia as the primary nitrogen source and their inability to utilize amino acids as a sole source of nitrogen. As stated in Smith et al, 2006, Bacteroides spp. has a variety of enzymes such as glutamate decarboxylase or deaminases that contribute to this function. Aside from beneficial functions there are other functions that may be damaging such as the rapid deconjugation of bile acids or the production of compounds with a high frequency of containing a mutagen (Smith et al., 2006). Thus it is clear that the Bacteroides spp. display a range of complex interrelations with their animal hosts. It is the host-commensal or host-parasite interactions that define this group of organisms (Smith et al, 2006). Bacteroides depend mainly on temperature and presence of predators, and can survive for up to six days under oxygen stressed conditions (Field et al., 2004). Virulence and Pathogenesis. As stated before, all of the Bacteroides species have the potential to be opportunistic pathogens and capable of causing a disease. Organisms such as Bacteroides with such a large genome bank at their disposal may simply need to turn on certain genes to change from friendly commensal to dangerous threat. several species including B. fragilis are important opportunistic pathogens and the most frequently isolated organisms from anaerobic infections (Smith et al, 2006). For 18 example, B. fragilis is a minor component of the species present in human gut (generally <1% of the flora), but it accounts for about 50% of all anaerobes isolated from cases of intra-abdominal infections, infections of the female genital tract, deep wounds and bactericimia (Smith et al, 2006). According to Wexler (2007) Bacteroides strains may have all of these; virulence factors can generally be subdivided into three broad categories: 1) adherence to tissues which is the initial step in the colonization and multiplication in a host, 2) protection from the host immune response (such as oxygen toxicity and phagocytosis), or 3) destruction of tissues. The need for Microbial Source Tracking? Total Maximum Daily Load. A Total Maximum Daily Load, or TMDL, is a calculation of the maximum amount of a pollutant that a water body can receive and still safely meet water quality standards (EPA, 2013). Under section 303(d) of the Clean Water Act, states, territories, and authorized tribes are required to develop lists of impaired waters. These are waters that are too polluted (eg. pH, pathogens, sediments, and/or organics) or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. Water Quality Standards are the foundation of the water quality-based pollution control program mandated by the Clean Water Act (EPA, 2013). Water Quality Standards (Table 1) define the goals for a waterbody by designating its uses, setting criteria to protect those uses, and establishing provisions such as antidegradation policies to protect waterbodies from pollutants. 19 Purpose Drinking Water Surface Water Full-Body Contact (swimming) Surface Water Partial-Body Contact (Fishing, boating, etc…) Wastewater (irrigation or discharge) Level of E. coli Zero 235 cfu/100 mL 575 cfu/100 mL < 2.2cfu/100 mL < 1.0 cfu/100 mL Table 1. Level of E. coli permitted for Different Types of Water (ADEQ, 2010 and EPA, 2009). CFU= colony forming units ADEQ and 303d list. The Arizona Department of Environmental Quality (ADEQ) was established by the Arizona Legislature in 1986. ADEQ’s goal is to preserve and improve public health, welfare, and the environment in Arizona. Today, ADEQ manages a variety of programs to bring awareness of the water issues Arizona is currently facing. Also, ADEQ uses programs to improve the wellbeing and health of Arizona’s citizens by ensuring water resources meet regulatory standards. This regulatory agency maintains a 303d list of locations that do not meet clean water regulatory standards. The 303d section requires TMDL be determined for the impaired waters by states, territories, and authorized tribes with supervision by the US EPA (Simpson et al., 2002). As of 2010, ADEQ listed twenty one impaired watersheds throughout the state of Arizona on the 303d list due to E. coli presence higher than the US EPA set standards (US EPA, 2008). This agency works diligently to bring those impaired watersheds up to standards. Surface water quality standards and public health. Human sources of fecal pollution represent a serious health risk because of the high likelihood of the existence of human pathogens. Cattle, swine, and chickens carry pathogens that can be transmitted 20 from animals to humans causing disease; therefore are a high concern. Due to the many associated health risks the presence E. coli pathogens can pose, entities such as the USEPA and ADEQ have implemented ways to reduce contact with impaired waters. The level of E. coli present in surface water will determine the acceptance of partial- or fullbody contact. Levels of E. coli cannot exceed 575 CFU per 100 mL for partial body contact (PBC) (USEPA, 2009). According to the US EPA, PBC means the human body coming in contact with surface water used for recreational activities, but not to the point of full-body submergence (2009). In addition, for full-body contact (FBC) E. coli levels cannot exceed 235 CFU per 100 mL. FBC means the human body is completely under water that is used for swimming or other recreational activity (USEPA, 2009). Exposure to water exceeding FBC levels is a health threat. These national standards correspond to approximately eight incidences of gastrointestinal illness per 100 swimmers per year (US EPA 2009). Numerous epidemiologic studies have been conducted around the world to assess the relation between recreational water quality and serious health effects including but not limited to gastrointestinal (GI) infectious diseases, eye infections, skin irritations, ear, nose, throat infections, and respiratory illness. Such studies have concluded that the rates of some serious health effects are higher in swimmers when compared to non-swimmers (Smith et al, 2006; Soller et al., 2010). As mentioned earlier in this paper, Bacteroides comprise a large portion of bacteria present in the intestinal flora of humans. According to Smith et al. (2006), Bacteroides generally trigger opportunistic infections that can happen at any time and damage the integrity of the mucosal wall of the intestine can lead 21 to conditions such gastrointestinal surgery, perforated or gangrenous appendicitis, perforated ulcer, diverticulitis, trauma and inflammatory bowel disease. Identifying the sources of fecal pollution allows for the monitoring and regulating of locations contributing to this contamination. Community Engagement Public Perception. Understanding public perception is as important as identifying the source of contamination in order to address water quality issues and protect public health. One goal of perception studies is to understand the interactions between people and physical environments (Cervantes et al., 2008). Although, anyone can be affected by poor water quality, minority populations may be of particular concern due to environmental and economic disproportions. These disparities are quite abundant throughout many minority communities in the United States. Substandard housing, occupational hazards, poor water quality and inequitable distribution of hazardous waste sites represent only a few problems that compromise the health of minority populations (Taylor-Clark et al., 2007). Of particular concern, is that these groups might not associate their current situation to a potential health risk. There is evidence that for many environmental risks, significant differences in judgments may be observed for those who differ in ethnicity, socioeconomic status, or educational level (Vaughan and Nordenstam, 1991). Perceptions of risk are influenced, in part, by characteristic ways in which situations of uncertainty are framed and interpreted. Because culturally based attitudes and values can influence general orientation toward risk and uncertainty, it is reasonable to expect that factors differentiating individuals on the basis of shared experiences, 22 values, and beliefs relevant to risk evaluation will be associated with nonequivalent perceptions in many situations. Taylor-Clark et. al. state, people’s potential for social action and participation is influenced by how they perceive a social condition as a problem and the information that they have to mobilize and act on resolving that problem. In addition, one of the most important predictors of risk perception is direct and indirect experience with the risk (Morua et al., 2011; Slovic, 1987). According to Morua et al., direct experience can provide feedback on the degree of risk along with the success of specific reduction strategies and is likely to vary by location (2011). People who perceive a relatively high likelihood of an adverse event in their life location (community) are more likely to take the necessary steps to reduce that likelihood or minimize negative impacts (O’Connor et al., 1999; Morua et al., 2011). Information transfer to the public. The potential for involvement to prevent or address social problems is hindered if there are barriers to accessing information. Access to information may shape public perceptions of and actions around environmental health threats (Taylor-Clark et al., 2007; Viswanath and Emmons, 2006). There is insufficient work that has focused on the communication barriers around environmental health issues that minorities face. Hispanics are the largest and fastest growing minority group in the United States. Unfortunately, Hispanics suffer disproportionate rates of environmentally related morbidity and mortality when compared with more affluent populations and often tend to live in environmentally stressed communities in which environmental hazards in the community are more prevalent (Williams and Florez, 2002). To successfully engage Hispanic audiences, programs must reflect the cultural traditions, beliefs, and values of 23 the people (Hobbs, 2004; Koss-Chioino and Vargas, 1999). While there is potential for benefits from campaigns to increase between minorities, carefully conceived campaigns could serve to reduce communication gaps by targeting appropriate channels and sources of information, while presenting culturally relevant messages (Taylor-Clark et al., 2007). In addition, several studies have found that there are different levels of trust in risk-related information (Morua et al., 2007). Therefore, the sources of information are very important when trying to relay information to a community and increase public participation. Some studies suggest that the level of trust individuals have in an agency can greatly influence their willingness to believe information provided by that agency (Morua et al., 2007). In the El Paso study conducted by Byrd et al, only a third of interviewees trusted the information provided by the local health department, while 56% information on television (1997). According to Williams and Florez, minorities often do no participate at a high level in various types of policy making (2002). Consequently, minorities have little impact on policies that may result in environmental inequalities in their communities. Therefore, presentation of culturally relevant messages may reduce knowledge gaps, increase participation, and thus facilitate effective actions. 24 CHAPTER 2: PRESENT STUDY The overall goal of this project is to use microbial source tracking methods to identify sources of contamination in the Upper Gila Watershed and to close the gap between scientific research and communities through the development of outreach “tools” in both English and Spanish and outreach activities aimed at educating the community about water quality and human health. Specific objectives: i) To differentiate between human and other sources of fecal contamination by targeting 16S rRNA Bacteroides in the Upper Gila Watershed. ii) Evaluate community perception on water quality of the San Francisco River in Clifton, Arizona. iii) Develop educational program outputs or “tools” about water quality that are culturally appropriate for the Clifton community in both English and Spanish. 25 REFERENCES Arizona Department of Environmental Quality. 2010 Water Quality. [Online] http://www.azdeq.gov/environ/water/index.html. Ashbolt, N. J., Grabow, W., and Snozzi, M. 2001 Indicators of Microbial Water Quality. [Online] www.who.int/water_sanitation_health/dwq/iwachap13.pdf. Buchan, A., Alber, M., and Hodson, R. E. 2001 Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenetic spacer region. FEMS Microbiol. Ecol. 35: 313-321. Byrd, T. L., VanDerslice, J., Peterson, S. K. 1997 Variation in environmental risk perceptions and information sources among three communities in El Paso. Risk Health Safety and Environ., 8: 355-372. Cervantes, O., Espejel H., Arellano, E., and Delhumeau, S. 2008 Users’ Perception as a Tool to Improve Urban Beach Planning and Management. Environ. Manage. 42: 249-264. Field, K. G., and Dick, L. K. 2004 Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes. Appl. Environ. Microbiol. 70: 5695-5697. Field, K. G., Dick, L. K., and Simonich, M. T. 2005 Microplate Subtractive Hybridization To Enrich for Bacteroidales Genetic Markers for Fecal Source Tracking. Appl. Environ. Microbiol. 71: 3179-3183. Field, K. G. and Samadpour, M. 2007. Fecal Source Tracking, the Indicator Paradigm, and Managing Water Quality. Water Research 41: 3517-3538. Hardwood, V., Staley, C., Badgley, B. D., Borges, K., and Korajkic, A. 2013. Microbial Source Tracking Markers for Detection of Fecal Contamination in Environmental Waters: Relationships to Pathogens and Human Health Outcomes. FEMS Microbiol Rev 38: 1-40. Hobbs, B. B. 2004 Latino Outreach Programs: Why They need to be Different. Journal of Extension, 42: 1-4. Koss-Chioino, J. & Vargas, L. 1999 Working with Latino youth: Culture, development, and context. San Francisco: Jossey-Bass Publishers. Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. 2006 Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR 26 Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water. Appl. Environ. Microbiol. 72: 4214-4224. Morua, A. R., Halvorsen, K. E., & Mayer, A. S. (2011). Waterborne Disease-Related Risk Perception in the Sonora River Basin, Mexico. Journal of Risk Analysis, 31: 866-878. O’Connor, R. E., Bord, R. J., and Fisher, A. 1999 Risk perceptions, general environmental beliefs, and willingness to address climate change. Risk Anal. 19: 461-471. Okabe, S., Okayama N., Savichtcheva O., and Ito T. 2007 Quantification of host-specific Bacteroides–Prevotella 16SrRNA genetic markers for assessment of fecal pollution in freshwater. Appl. Microbiol. Biotechnol. 74: 890–901. Parveen, S., Hodge, N. C., Stall, R. E., Farrah, S. R., and Tamplin, M. L. 2001 Phenotypic and Genotypic Characterization of Human and Nonhuman Escherichia coli. Water Res. 35: 379-386. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J. 2002 Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 68: 5796-5803. Shanks, O. C., et al. 2010 Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution. Appl. Environ. Microbiol. 76: 1359-1366. Simpson, J. M., Santo Domingo, J. W., and Reasoner, D. J. 2002 Microbial Source Tracking: State of the Science. Environ. Sci. Technol. 36: 5279-5288. Slovic, P. 1987 Perception of Risk. Science 236: 280-285. Smith, C. J., Rocha, E. R., and Paster, B. J. 2006 The Medically Important Bacteroides spp. in Health and Disease. Prokaryotes 7: 381–427. Soller, J.A, Schoen, M. E., Bartrand, T., Ravenscroft, J.E., and Ashbolt, N. J. 2010 Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research 30: 1-18. Taylor-Clark, K., Koh, H., and Viswanath, K. 2007 Perceptions of Environmental Health Risks and Communication Barriers among Low-SEP and Racial/Ethnic Minority Communities. Journal of Health Care for the Poor and Underserved 18: 165– 183. U. S. Environmental Protection Agency. 2008 Arizona 2008 Water Quality Assessment Report. http://iaspub.epa.gov/waters10/attains_index.control?p_area=AZ#wqs. 27 U.S. Environmental Protection Agency. 2009 Water Quality Standards [Online.] http://www.epa.gov/waterscience/standards/wqslibrary/az/az_9_wqs.pdf U. S. Environmental Protection Agency. 2013. Impaired Waters and Total Maximum Daily Loads [Online] http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/index.cfm. Vaughan, E., and Nordenstam, B. The Perception of Environmental Risks among Ethnically Diverse Groups. Journal of Cross-Cultural Psyc. 22: 29-60. Viswanath, K., and Emmons, K. M. 2006 Message effects and social determinants of health: its application to cancer disparities. Journal of Comm., 56: 238-264. Wexler, H. M. 2007 Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20: 593-621. Williams B. L. and Florez, Y. 2002 Do Mexican Americans Perceive Environmental Issues Differently than Caucasians: A Study of Cross-Ethnic Variation in Perceptions Related to Water in Tucson. Environ Health Persp. 110: 303-310. 28 CHAPTER 3: DISSERTATION FORMAT This Dissertation is presented in a format in which manuscripts in the process of submission for publication are presented in appendices following this introduction. Appendix A contains a research article formatted for publication in the Journal of Environmental Quality. Appendix B contains an extension article formatted for publication in the Journal of Extension. Appendix C (English), Appendix D (Spanish), Appendix E (English), and Appendix F (Spanish) contain publications published to the University of Arizona Cooperative Extension. Appendix G contains raw data for the publication listed in Appendix A. All research, extension and outreach was conducted in coordination with the University of Arizona Maricopa Agricultural Center in Maricopa, Arizona, and the laboratory of Dr. Channah Rock. 29 APPENDIX A USE OF BACTEROIDES MICROBIAL SOURCE TRACKING IN THE SAN FRANCISCO RIVER, ARIZONA (Submitted to the Journal of Environmental Quality) Berenise Rivera1, 2 and Channah Rock1, 2 1 Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona 85721 2 Water Quality Laboratory, Arizona Cooperative Extension, Maricopa Agricultural Center, Maricopa, Arizona 85138 Corresponding Author Berenise Rivera The University of Arizona Department of Soil Water and Environmental Science 37860 W. Smith Enke Rd, Maricopa, AZ 85138 Ph: 520-381-2235 Email: brivera1@email.arizona.edu 30 Abstract Water quality can become compromised by several sources ranging from human waste (septic tank leakage and recreation), agricultural or livestock operation runoff, and local wildlife. The genus Bacteroides have been suggested as alternate fecal indicator to Escherichia coli because they make up a significant part of the fecal bacterial population, have little potential for re-growth in the environment, and have a high degree of host specificity that likely reflects differences in host animal digestive systems. The San Francisco River is currently listed as “impaired” on the US EPA 303 list because it exceeds water standards for E.coli. Our team worked with the Arizona Department of Environmental Quality (ADEQ) to employ microbial source tracking (MST) techniques designed to target specific diagnostic sequences within the 16S rRNA Bacteroides genome present in feces from human and bovine sources. MST was coupled with traditional microbiological methods for E. coli bacteria to determine the dominant sources of fecal contamination in the San Francisco River. Of 70 samples collected over 1year, 81% were positive for universal Bacteroides marker (Allbac). Of the 57 Allbacpositive samples, 68% show contributions of the human-specific marker and 60% were positive for bovine-specific marker. While 28% of the total samples assayed showed elevated levels of E. coli (>235 MPN/100mL), there were minimal significant correlations between Bacteroides and generic E. coli across all samples. This study proves MST data can be used in conjunction with traditional microbiological methods to better understand surface water quality impairments, allowing for determination of specific sources of contamination. 31 Introduction Fecal contamination poses a health threat in relation to environmental waters used for drinking water supply, recreational activities, and food production. Fecal contamination can result from point and non-point sources impacting ground and/or surface water (Griffith et al., 2003; Roslev and Bukh, 2011). It is crucial to protect water from fecal contamination that is used for drinking, recreation, and harvesting of seafood to safeguard human health (Scott et al., 2002). Among the highest risk sources of fecal contamination is human sewage, which can contain multiple pathogens and humanspecific viruses (Staley et al., 2013). Domestic and agricultural animals can also spread numerous pathogens; including, Salmonella, E. coli O157:H7, Giardia spp., Cryptosporidium spp. (Staley et al., 2013; Field and Samadpour, 2007b). While still a concern, human health risks associated to fecal waste from wildlife and domesticated animals are considered to be lower compared to human fecal waste, because viruses, a common cause of illnesses from exposure to feces, are highly host specific (Roslev and Bukh, 2011; Field and Samadpour, 2007b). However, due to the potential risks associated with fecally contaminated water, understanding and identifying the possible sources of fecal pollution is essential in evaluating related health threats as well as taking the necessary measures to correct the problem (Scott et al., 2002; Staley et al., 2013). As a result, microbial source tracking (MST) methods have been developed to differentiate between these sources of contamination (Hagedorn et al, 2011; Hardwood et al., 2013). The motivation for emergence of this research area derives from 1) the effort to determine the extent to which fecal sources influences human health risk from 32 exposure with water and 2) the desire to attribute fecal indicator bacteria (FIB) loading in water bodies to the correct fecal sources (Harwood et al., 2013). MST is under the assumption that some characteristics in or related with fecal waste can be used to identify the feces type or the source (Roslev and Bukh, 2011; Field and Samadpour, 2007b). By using the appropriate method and appropriate indicator, sources of fecal contamination can be found and characterized as to animal or human origin (Simpson, Santo Domingo and Reasoner 2002). MST based on identification of specific molecular markers can provide a more complete picture of the land uses and environmental health risks associated with fecal pollution loading in a watershed than is currently possible with traditional indicators and methods (Jenkins et al., 2009). MST methods have the ability to identify “who” is contributing to the pollution whereas traditional culture based methods only tell you “if” and “when” fecal contamination is present. Successfully distinguishing the sources of fecal contamination, will allow reducing or eliminating diseases associated with contaminated water as a major cause of health problems (Simpson et al., 2002). This area of research is of particular interest to state and federal regulatory agencies, such as EPA and Departments of Environmental Quality, who are charged with reducing both point and non-point sources of contamination in surface waters. MST can provide more of a complete picture of the potential sources of fecal contamination than using traditional indicators, such as E. coli alone. The bacterial order Bacteroidales is abundant in feces of many warm-blooded animals, including humans. Due to the abundance of this bacterium in human and animal feces, it has allowed for host-related analysis targeting genes present in the Bacteroides 33 genome. As stated previously, Bacteroides make up a significant portion of the fecal bacteria population, have little potential for growth in the environment, and have high degree of host specificity that likely reflects differences in host animal digestive systems (Layton et al., 2006). Due to these characteristics, numerous methodologies have been designed to target specific diagnostic sequences within the Bacteroides 16S rRNA gene (which is vital for protein synthesis and therefore present in all bacteria) present in feces from different animals. Katherine Field and colleagues, in particular, have performed extensive research into the use of Bacteroides 16S rRNA-based PCR assays for MST. Field and Bernard (2004a) developed 16S rRNA gene makers from Bacteroides to detect fecal pollution and to distinguish between human and ruminant (e.g., bovine, goat, sheep, deer, and others) sources by PCR. Developing MST methods specific to molecular markers within the target gene will allow differentiating between human and ruminant associated Bacteroides, therefore identifying the possible source of contamination. As Scott et al. (2002) mentions, this approach offer the advantage of circumventing the need for a culturing step, which allows a more rapid identification of target organism. In this study our team used MST techniques coupled with conventional microbial methods that include a group of methodologies aimed at finding out the dominant sources of fecal contamination in resource waters. The objective was to differentiate between human and ruminant sources of fecal contamination by targeting 16S rRNA in surface water. By characterizing the sources of microbial contamination in the San Francisco River this work will help to define sources of contamination within the watershed, which can be used to determine the public health and ecological significance in the area. 34 Moreover, results of this study will be used by the Arizona Department of Environmental Quality (ADEQ) to strengthen the microbial occurrence database within the state of Arizona and help to develop an improved management plan for future uses of the river. Microbial Detection Methods Site Description. The Upper Gila watershed is located in Eastern Arizona in the towns of Safford, Duncan, and Clifton. The San Francisco River is currently listed on the US EPA 303d list due to E. coli exceeding regulatory standards for partial- and full- body contact. The Upper Gila Watershed is comprised land stretching from Coolidge Dam to the Arizona-New Mexico border. The watershed covers about 6,000 square miles, of which 17 percent is privately owned and the remainder is under the stewardship of state, federal and tribal governments. Citizens can access the river on both private and public lands to enjoy many outdoor activities. Today the Upper Gila watershed is a destination for camping, swimming, fishing, hiking, horseback riding and picnicking. Additionally, the Upper Gila watershed is exploding with development and a clash of urban and rural values threaten existing water supplies. Increased public awareness of environmental issues and possible solutions has spawned interest from a diverse community along with support of the local health officials and monetary support from ADEQ to reduce nonpoint source contamination from local residents. In recent years, this community has seen the inclusion of ranchers, farmers and miners in efforts to combat pollution in the San Francisco River and is no longer limited to environmental organizations. 35 Water Sampling. Grab water samples (n=70) were collected in a one liter sterile polypropylene bottle by our laboratory, the Arizona Department of Environmental Quality and trained community volunteers from Clifton, Arizona from July 1, 2010 through November 19, 2011. Sampling Sites. (Figure 1) Sites were selected within the impaired region to monitor E. coli and areas known for heavy recreational uses. E. coli. Standard Method # 9223B (1998) was performed using the multi-well procedure (IDEXX Laboratories, Westbrook, ME). According to the manufacturer instructions, the substrate was emptied into a 120-mL vessel containing sodium thiosulfate and 100-mL of sample was added. The bottle was shaken vigorously until the substrate dissolved and poured into a quanti-tray. The quanti-tray was placed into QuantiTray Sealer 2X (IDEXX Laboratories, Westbrook, ME), and sealed. The quanti-tray was incubated at 35 ± 5ºC for 24 hours. The most probable number (MPN) value was obtained from the table provided by the manufacturer by counting the yellow wells for total coliforms and the fluorescent wells for E. coli. Molecular Methods Sample water concentration. Samples were concentrated by membrane filtration using a 47 mm diameter cellulose acetate membrane with 0.45µm pore size (Pall Gelmann Laboratory, Ann Arbor, MI). Sample volumes ranged from 10-mL to 500-mL based on the turbidity of the sample. The filters were placed into individual 15-mL conical tubes containing 2-mL sterile water and stored at 4ºC until further processing. 36 DNA extraction. The DNA was eluted from the filters by vortexing in 2-mL sterile water for 10 seconds. Then the water containing the DNA was then transferred to a 2-mL eppendorf tube. All DNA extractions were performed using QIAmp DNA Stool Kit (Qiagen Sciences, Valencia, CA) as described by the manufacturer’s instructions. DNA extractions were stored at -80ºC (-122°F) until molecular testing was performed. Conventional Polymerase Chain Reaction (PCR). Conventional PCR was used as a pre-screening tool for the Allbac and HF183 Bacteroides assays. Because the CowM2 assay was designed as a probe based assay, CowM2 was not pre-screened for collected samples. The AllBac assay was followed as stated in Layton et al. (2006), and the Bacteroides species (Allbac) were amplified using a master mix prepared at a concentration of 1x containing 12.5 µL of GoTaq Green Master mix (Promega Corporation, Madison, Wisconsin), 1µL of forward AllBac296f primer (5'GAGAGGAAGGTCCCCCAC-3') and 1 µL of AllBac412r primer (5'CGCTACTTGGCTGGTTCAG-3') as previously described (Layton et al, 2006) (Eurogentec, San Diego, CA). The final concentration was 15pmol of each primer, 2 µL of sample, and 8.5 µL of nuclease free water for a final volume of 25 µL. Positive controls contained 2 µL of 300,000 copies of Allbac 296 plasmid insert and the negative control contained 2 µL of nuclease free water. The tubes were placed into the PCR 96 well thermal Cycler (Applied Biosystems, Foster City, CA) and run in the following temperature profile: stage one set at 95ºC (2 minutes); stage two set at temperatures varying from 95ºC (30 seconds), 60ºC (45 seconds), and 72ºC (30 seconds) and run for 37 35 cycles; and, the last stage ends at 72ºC (2 minutes). Once run was completed, the PCR machine decreased the temperature to 4ºC. The products were visualized in a 1.5% agarose gel (1.5 g agarose in 100 mL of Tris-Borate EDTA buffer) by comparing the band intensities to the intensity of a DNA mass ladder (exACTGene, Fisher Scientific, Canada). Table 1 summarizes the primers, base pair size and annealing temperature used for both HF183 (described below) and Allbac Bacteroides. As stated in Seurinck et al. (2005), the human specific HF183 Bacteroides 16S rRNA sequence specific to human fecal contamination was amplified using a master mix at a 1x concentration containing 12.5 µL of GoTaq Green Master mix (Promega Corporation, Madison, Wisconsin) 1µL of forward primer (HF183: 5'ATCATGAGTTCACATGTCCG-3'), 1 µL of newly developed reverse primer (5'TACCCCGCCTACTATCTAATG-3'), 2 µL of sample, and 8.5 µL of nuclease free water to have final volume of 25 µL. Each primer had a final concentration of 15pmol. A positive control contained 2 µL of 300,000 copies of HF183 plasmid insert and the negative control contained 2 µL of nuclease free water. The tubes were then placed into the PCR Verti 96 well thermal cycler (Applied Biosystems, Foster City, CA) and run in the following temperature profile: stage one set at 95ºC at one cycle; stage two set at temperatures varying from 94ºC (30 seconds), 60ºC (1 minute), and 72ºC (2 minute) and run for 35 cycles; and, the last stage ending at 72ºC (10 minutes). Once the run was completed, the PCR machine decreased its temperature to 4ºC. Quantitative Polymerase Chain Reaction (qPCR). After visualizing the products using conventional PCR, the samples were re-run using qPCR to determine target gene 38 concentrations present in each water sample. Allbac and HF183 PCR (qPCR) assays were performed using SYBR green PCR Master Mix (Applied Biosystems, Foster City, CA), with 15pmol of each primer as mentioned above. Plasmid DNA containing 16S rRNA gene from Bacteroides, HF183 and Allbac respectively, were run as standards using 10fold dilutions of the plasmid ranging from 3.0 X 10⁵ copies to 3 copies. Plasmid DNA concentration was determined by using NanoDrop ND-1000 UV spectrophotometer. Quantitative PCR (qPCR) for HF183 was performed using a 12.5 µL reaction mixture SYBR green, 1 µL of each primer (as mentioned in conventional PCR), 6 µL of nuclease free water, 2.5 µL of bovine serum albumin (stock BSA at 2 mg/mL) and 2 µL of sample. The sample was then placed in a well from a MicroAmp Optical 96-well (Applied Biosystems, Foster City, CA) reaction plate. The same temperature profile from Seurinck et al (2004) was used. Allbac qPCR were performed using 12.5 µL of SYBR green and used primers mentioned in conventional PCR, following the same conditions described in Layton et al. (2006). The CowM2 (bovine) qPCR assay was performed using TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA), with 500 uM stock of the forward (CowM2 F: 5-CGGCCAAATACTCCTGATCGT-3') and reverse (CowM2 R: 5'GCTTGTTGCGTTCCTTGAGATAAT-3') primers, and 100uM (6-FAM AGGCACCTATGTCCTTTACCTCATCAACTACAGACA TAMRA) of stock fluoregenic probe (Shanks et al, 2008). CowM2 Bacteroides 16S rRNA sequence was amplified using a universal master mix at a 2x concentration containing 12.5 µL of TaqMan Universal Master mix (Applied Biosystems, Foster City, CA), 3.5µL of 39 primer/probe mix (primer/probe mix: 10µl from stock primers and 4 µl of stock probe), 2.5 µl bovine serum albumen from a 2mg/mL stock solution, 2 µL of sample, and 4.5 µL of nuclease free water to have final volume of 25 µL. Plasmid DNA concentrations were determined by using NanoDrop ND-1000 UV spectrophotometer. Plasmid DNA containing 16S rRNA gene from CowM2 Bacteroides, were run as standards using 10fold dilutions of the plasmid ranging from 3.0 X 10⁵ copies to 3 copies. The sample was then placed in a well from a MicroAmp Optical 96-well manufacturer reaction plate. The plate was then placed into the qPCR thermal cycler (Applied Biosystems, Foster City, CA) and run in the following temperature profile: stage one set at 95ºC at one cycle; stage two set at temperatures varying from 95ºC (15 seconds), 60ºC (1 minute), and 72ºC (1 minute) and run for 40 cycles; and ending at 4º. For all qPCR reactions, standards, negative controls (no DNA), and samples were run in triplicates. In order to avoid false negatives from inhibitors that may be present in the sample which can result in negative amplification, the samples were diluted 10-fold and 100- fold and were also run in triplicate. Table 2 summarizes real time conditions for Allbac, HF183 and CowM2 assays. Amplification control. To monitor PCR inhibition from DNA extractions, Salmon testes DNA (US EPA 2010) was used to assess inhibition and was added to the final reaction mixture (Cao et al, 2012). Inhibition can occur when substances present in a water sample interfere with PCR amplification, which can lead to false-negative results. Under the Sketa protocol (US EPA 2010), salmon testes DNA is added prior to DNA extraction and the result is used as a combined sample processing and inhibition control 40 to control for both DNA recovery and presence of inhibition (US EPA, 2010 and Cao et al, 2012). In this study, salmon testes DNA were added to the extracted DNA rather than before DNA extraction to 50% of randomly selected samples (using a random number table provided by Excel) and evaluated for PCR inhibition. Salmon DNA was added to each well at 2 ng per µl to the final reaction mixture. The CT value was determined by running blank samples with Salmon DNA at varying concentrations from 0.02ng to 200ng. The expected CT value for amplification of Salmon DNA in uninhibited samples was determined as the mean CT value of 30. Reactions were deemed inhibited if the CT value was greater than 30 ± 2. Statistical Data Analysis. Statistical analyses were performed using the free programming R version 3.0.1 (R Core Development Team 2013). Specific comparisons between parameters (E.coli concentrations, sample location, and Bacteroides markers) were analyzed by correlation test with p-values less than 0.05 considered being statistically significant. Results and Discussion A total of 70 samples were collected from July 1, 2010 to November 19, 2011. Monthly samples were collected from the ten identified sites: Upper San Francisco, Upper Blue, Lower Blue, State Lands/BLM, State Lands Main Crossing, State Lands Hole in the Rock, Kaler Deeded Land, Clifton N. End Bridge, Clifton at Old Dump and Below Morenci Gulch. Sites were selected based of the US EPA 303d list of impaired locations flowing downstream where the river runs through the town of Clifton, AZ. E. 41 coli concentrations per site indicate that 8 of the 10 sites exceeded the US EPA National standards for full body contact (FBC) of 235 cfu/100mL and 7 of the 10 sites exceeded the partial body contact (PBC) standards of 575 cfu/100mL (Figure 2). Of the total 70 samples that were analyzed 93% were positive for E. coli. It is important to note that all exceedances occurred in warm weather conditions likely after summer rains had begun. Typically, Clifton, Arizona receives 5 inches of rain during the summer months (Greenlee County, 2011). In areas affected by moderate to heavy recreation or livestock watering, E. coli concentrations remained in the exceedance range while temperatures were elevated. The average temperatures in Clifton, Arizona during the summer months range from 97° F to 100° F (Greenlee County, 2011). The presence of E. coli in surface waters is often attributed to fecal contamination from agricultural and urban/residential areas. In this study, locations State Lands Main Crossing and State Lands Hole in the Rock seemed to consistently have the highest concentrations of E. coli when compared to other sample locations within the watershed. Through our data it is apparent that E. coli concentrations at particular locations may vary depending on the bacteria level already in the river, inputs from point and non-point sources, and die-off or multiplication of the organism within the river water. When the data was analyzed our research team also considered seasonal impacts to water quality and used the following months for each seasonal evaluation; Spring (March-May), Summer (June-August), Fall (September-November), and Winter (December-February). Seasonal impacts are especially important in the southwest during monsoon season (mid-June to late-September) when there can be intense rain events in 42 the region being studied. These peak rain events and subsequent overland flow increase agricultural and urban runoff (non-point sources); which may contribute to surface water contamination. Evaluating the data seasonally allowed our research team to better understand how these events may influence pollutant loading to the watershed. Samples were not collected during the spring but were collected for summer, fall and winter. High concentrations of E. coli occurred in the summer months with 96% of all samples collected exceeding FBC and PBC standards. Also, 88% of E. coli exceedances recorded occurred in the summer monsoon months (June-September) in both 2010 and 2011. Overall, E. coli concentrations and exceedances were higher in the summer of 2011 than the previous summer. This may be due to increased sedimentation and nutrient loading of the streams from summer rain run-off following the Wallow fire of 2011 (ADEQ, 2012). Also, high E. coli concentrations may be due to unmanaged recreation in multiple areas along the river. In the fall months of 2011, 5% of the samples exceeded FBC and PBC standards at the SFR State Lands Main Crossing site. Samples collected during the winter season consistently showed low concentrations of E. coli numbers regardless of site. In order to better understand and identify point and non-point sources of pollution in the watershed, Bacteroides molecular markers were used to identify the presence of Allbac, HF183 (human) and CowM2 (bovine) in the San Francisco River. Standard PCR was used as an initial screening technique to see if the markers were present, followed by qPCR to quantify the molecular genes. The quantification can be used to determine relative quantities between each sample location. Also, molecular quantification can be used to determine if a correlation exists between E. coli and Allbac, HF183 or CowM2 43 molecular markers. Of the total 70 samples that were analyzed using molecular methods, 77% were positive for Allbac molecular markers and figure 3 depicts the concentrations of Allbac copy numbers per 100 mL for each of the ten samples sites. Varying differences in concentration of Allbac molecular markers were seen for each site with State Lands Hole in the Rock, Kaler Deeded Land and Clifton at Old Dump showing a greater range in concentrations of markers than other sites evaluated. Figures 4 and 5 show the ranges in concentrations of gene copies per 100 mL of HF183 and CowM2 gene targets respectively. When comparing these figures, it should be noted that gene copies at sample sites higher in the watershed (up-stream) tend to have less variability while sites downstream (closer to town and recreational impacts) tend to have a wider range in gene target concentrations shown in Figures 3 through 5 by taller box plots. Seasonal impacts were apparent and for all sample sites Allbac (92%) and HF183 (48%) molecular markers were found at higher numbers in the summer months. Human impacts have also been tied to increased recreation in certain locations in the watershed. CowM2 (56%) molecular markers were found at higher number in the fall. This could be due to effects of grazing patterns in the watershed where cattle have been documented to be ranging near the river (ADEQ, 2012). Figure 5; show the concentrations of CowM2 molecular markers per 100 ml, sites overall show low variability with the highest distribution seen at Below Morenci Gulch. Human impacts have also been tied to increased recreation in certain locations in the watershed. Analysis suggests that these fluctuations coincide with extreme storm events and thus are a result of increased overland flow. Eighteen (24%) of 44 the 70 samples showed inhibition and were further diluted to 1:10 and 1:100 to reduce inhibition. Although, microbial indicator organism E.coli and molecular markers for Bacteroides were detected in all sample locations evaluated in this study, only the Lower Blue site showed statistically significant correlations for all three molecular markers: HF183, Allbac and CowM2 (p=0.02, 0.001, and 0.02). There were two sites that were showed statistically significant correlations between E. coli concentrations and Allbac, Kaler Deeded Land (p=0.003) and Clifton North End (p=0.001). No significant correlations were observed based on concentrations of organisms detected for the other sampling sites during the sampling period. All correlations exceeded the set of 0.05 were not considered to be statistically significant but any p-values less than 0.05 considered being statistically significant (Table 3). Conclusions Surface waters often contain traces of fecal contamination from several source groups; it is not surprising to detect molecular markers from different sources during our MST studies (Roslev and Bukh, 2011, Gourmelon et al, 2007). Throughout the study period, E. coli was detected during summer, fall and winter indicating fecal contamination and the potential of harmful pathogens present in the San Francisco River which can pose a human health risk. From our data, we can clearly see E. coli fluctuations throughout the sites with 96% of the samples exceeding PBC and FBC during the summer months. The concentration of E. coli in surface water depends for the 45 most part on the runoff from non-point sources and recreational activities. Of 70 samples collected over 1 year, 81% were positive for universal Bacteroides marker (Allbac). Of the 57 Allbac-positive samples, 68% show contributions of the human-specific marker and 60% were positive for bovine-specific marker. While 28% of the total samples assayed showed elevated levels of E. coli (>235 MPN/100mL), there was no significant correlations between Bacteroides and generic E. coli across all samples. The presence of human molecular markers can be an indication that human recreational activities impacting the watershed at the locations mentioned previously. Livestock watering and wildlife within the watershed may be contributing to Allbac molecular markers. Also, agricultural activities such as runoff during monsoon season may be contributing to Allbac molecular markers. As mentioned before, in many locations throughout the watershed it has been noted certain sites are used for livestock watering which are contributing to bovine molecular markers. This study proves that MST data can be used in conjunction with traditional microbiological methods to better understand surface water quality impairments, allowing for determination of specific sources of contamination. By identifying the sources of fecal contamination in the watershed, furthers studies can be designed to better understand potential inputs identified by MST and how to mitigate pollutant loading from those sources. It is important to acknowledge that MST has come a long way but this study benefited from looking at different parameters other than source associated markers. The results from this study helped the Gila Watershed Partnership of Arizona (a local non-profit group that works to improve the Upper Gila Watershed) secure a 46 $199,245 grant from the Arizona Department of Environmental Quality to start construction of restroom facilities in heavily used recreation areas on the San Francisco River north of the Town of Clifton in Greenlee County. Human MST provided evidence that contamination is directly related to unmanaged recreation in multiple areas (ADEQ, 2012). The grant is one of three awarded in Arizona this year administered by ADEQ’s water quality improvement grant program to address polluted runoff from many different sources. In addition, the data collected in this study will be used to develop an outreach program for community members. Furthermore, this study can be used to work with local, state and government agencies to address the problems. 47 References American Public Health Association, American Water Works Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater 20th Edition. Eds. Clesceri, L. S., Greenberg, A. E. and Eaton, A. D. United Book Press Inc, Baltimore, MD. Arizona Department of Environmental Quality. 2010. Water Quality. [Online] http://www.azdeq.gov/environ/water/index.html. Arizona Department of Environmental Qualtity. 2012. Watershed Improvement Plan San Francisco and Blue Rivers. [Online] http://lists.azdeq.gov/environ/water/watershed/download/san_fran_blue-wip.pdf Cao, Y., Griffith, J. F., Dorevitch, S., and Weisberg, S. B. 2012. Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters. Appl. Environ. Microbiol. 113: 66-75. Field, K. G., and Dick, L. K. 2004a. Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes. Appl. Environ. Microbiol. 70:5695-5697. Field, K. G., and Samadpour, M. 2007b. Fecal Source Tracking, the Indicator Paradigm, and Managing Water Quality. Water Res 41: 3517-3538. Gourmelon, M. Caprais, M. P., Segura, R., Le Mennec C., Lozach, S., Piriou, J. Y., and Rince, A. 2007. Evaluation of Two Library-Independent Microbial Source Tracking Methods To Identify Sources of Fecal Contamination in French Estuaries. Appl. Environ. Microbiol. 73: 4857-4866. Greenlee County. 2011. Greenlee County Multi-Jurisdictional Hazard Mitigation Plan. [Online] http://www.co.greenlee.az.us/emergency/Greenlee%20County%20Multi%20Juris %20Haz%20Mit%20Plan_Draft_June%202011.pdf. Griffith, J. F., Weisberg, S. B., and McGee C. D. 2003. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J. Wat. Health 1: 141-151. Hagedorn, C., Blanch, A. R., and Hardwood, V. J. 2011. Microbial Source Tracking: Methods, Applications, and Case Studies. New York, NY: Springer-U.S. 48 Harwood, V. J., Staley, C., Badgley, B. D., Borges, K., and Korajkic, A. 2013. Microbial Source tracking markers for Detection of Fecal Contamination in Environmental Waters: Relationship between pathogens and Human Health outcomes. FEMS Microbiol Rev 38:1-40. Jenkins, M. W., Sangam, T., Lorente, M., Gichaba, C. M., and Wuertz, S. 2009. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assay. Water Research 43: 4956-4966. Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. 2006. Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water. Appl. Environ. Microbiol. 72: 4214-4224. R Core Development Team. 2013. R: A Language and Environment for Statistical Computing: Vienna, Austria: R Foundation for Statistical Computing. Roslev, P., and Bukh, A. S. 2011. State of the Art Molecular Markers for Fecal Pollution Source Tracking in Water. Appl Microbiol Biotechnol 89: 1341-1355. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J. 2002. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 68: 5796-5803. Seurinck, S., Defoirdt, T., Vestraete, W., and Siciliano, S. D. 2004. Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ. Microbiol 7: 249-259. Shanks, O. C., Atikovic, E., Blackwood, A. D., Noble, R. T., Santo Domingo, J., Seifring, S., Sivaganesan, M. and Haugland, R. A. 2008. Quantitative PCR for genetic markers of cattle fecal pollution. Appl. Environ. Microbiol. 74: 745-752. Simpson, J. M., Santo Domingo, J. W., and Reasoner, D. J. 2002. Microbial Source Tracking: State of the Science. Environ. Sci. Technol. 36: 5279-5288. Staley, Z. R., Chase, E., Mitraki, C., Crisman, T. L., and Hardwood, V. 2013. Microbial Water Quality in Freshwater Lakes with Different Land Use. Appl. Microl. 115: 1240-1250. U. S. Environmental Protection Agency. 2010. Method A: Enterococci in water by TaqMan Quantitative Polymerase Chain Reaction (qPCR) Assay. EPA-821-R-10004. Washington, DC: Office of Water. 49 1.Upper San Francisco, 2. Upper Blue, 3. Lower Blue, 4.State Lands/BLM, 5.State Lands Main Crossing, 6. State Lands Hole in the Rock, 7.Kaler Deeded Land, 8. Clifton N. End Bridge, 9.Clifton at Old Dump, and 10.Below Morenci Gulch Figure 1. San Francisco River Watershed Sampling Sites 50 Assay Primer Sequence Allbac 296f 5’-GAGAGGAAGGTCCCCCAC-3’ Allbac HF183 Allbac 412r 5’-CGCTACTTGGCTGGTTCAG-3’ HF183f 5’-ATCATGAGTTCACATGTCCG-3’ Newly Developed Reverse 5’-TACCCCGCCTACTATCTAATG-3’ Cow M2f 5’-CGGCCAAATACTCCTGATCGT-3’ Cow M2 Cow M2r 5’-GCTTGTTGCGTTCCTTGAGATAAT-3’ Table 1. PCR Primers and Reaction Conditions Target BP size Annealing Temp (°C) Reference Total 106 60°C Layton et al, 2006 Human 82 60°C Seurinck et al, 2005 Bovine 92 60°C Shanks et al, 2008 51 Reference Holding Cycle Cycling Stage Melting Curve Stage Allbac (Layton et al, 2006) 50°C for 2 minutes 95°C for 30 seconds 95°C for 15 seconds 95°C for 10 minutes 60°C for 45 seconds 60°C for 1 minute 50 cycles 95°C for 30 seconds 50°C for 2 minutes HF183 (Suerinck et al, 2005) 53°C for 1 minute 95°C for 15 seconds 95°C for 10 minutes 60°C for 1 minute 40 cycles 95ºC for 15 seconds CowM2 (Shanks et al, 2008) 50ºC for 2 minutes 60ºC for 1 minute 95ºC for 10 minutes 60ºC for 1 minute 60ºC for 1 minute 40 cycles Table 2. Quantitative PCR Real-Time Conditions 52 1. Full Body Contact= 235 CFU/100 mL 2. Partial Body Contact= 575 CFU/100 mL Figure 2. Average E.coli Concentrations Per Location (n=70) 53 1.00E+14 Allbac gene copies/100mL 1.00E+12 1.00E+10 1.00E+08 1.00E+06 1.00E+04 1.00E+02 1.00E+00 Upper San Upper Blue Lower Blue State State State †Kaler Francisco Lands/BLM Lands Main Lands Hole Deeded Cross in the Rock Land Clifton Clifton at North End Old Dump Bridge Box plot depicts Allbac gene copies/100mL for each site on the San Francisco River. The lower boundary of the box indicates the 25th percentile, then line within the box represents the median, and the boundary of the box farthest from the zero indicates the 75th percentile. † The lower quartile for this site is 1.0E-06 Figure 3. Boxplot of Allbac concentrations of the San Francisco River Below Morenci Gulch 54 1.00E+14 HF813 gene copies/100mL 1.00E+12 1.00E+10 1.00E+08 1.00E+06 1.00E+04 1.00E+02 1.00E+00 † Upper San Upper Blue Lower Blue State State State Francisco Lands/BLM Lands Main Lands Hole Cross in the Rock Kaler Deeded Land Clifton Clifton at North End Old Dump Bridge Box plot depicts HF183 gene copies/100mL for each site on the San Francisco River. The lower boundary of the box indicates the 25th percentile, then line within the box represents the median, and the boundary of the box farthest from the zero indicates the 75th percentile. †The lower quartile for this site is 1.0E-01 Figure 4. Boxplot of HF183 concentrations of the San Francisco River Below Morenci Gulch 55 1.00E+14 CowM2 gene copies/100mL 1.00E+12 1.00E+10 1.00E+08 1.00E+06 1.00E+04 1.00E+02 1.00E+00 Upper San Upper BlueLower Blue State Francisco Lands/BLM State State Kaler Lands Lands Hole Deeded Main Cross in the Rock Land Clifton Clifton at North End Old Dump Bridge Below Morenci Gulch Box plot depicts CowM2 gene copies/100mL for each site on the San Francisco River. The lower boundary of the box indicates the 25th percentile, then line within the box represents the median, and the boundary of the box farthest from the zero indicates the 75th percentile. Figure 5. Boxplot of CowM2 concentrations of the San Francisco River 56 Site Upper San Francisco (n=8) Upper Blue (n=7) Lower Blue (n=11) State Lands/BLM (n=1) State Lands Main Crossing (n=13) State Lands Hole in the Rock (n=10) Kaler Deeded Land (n=6) Clifton North End Bridge (n=3) Clifton at Old Dump (n=8) Below Morenci Gulch (n=3) Allbac HF183 CowM2 0.3072 0.2636 0.1102 0.001*** 0.0209** 0.0231** 0.000000578 0 0.000294 NOB NOB NOB 0.468 0.2605 0.4502 0.3155 0.3192 0.4528 0.003* 0.5965 0.6165 0.001*** 0.6652 0.6652 0.1239 0.801 0.1481 0.0000000134 2.2E-16 0.6667 Table 3. The correlation (p-values) between E. coli concentrations and Bacteroides molecular markers for each site 57 APPENDIX B Use of Survey Methods to Enhance Watershed Education of Minority Populations in Clifton, AZ (Submitted to the Journal of Extension) Berenise Rivera Ph.D. Candidate Department of Soil, Water and Environmental Science The University of Arizona Maricopa, Arizona brivera1@email.arizona.edu Channah Rock, Ph.D. Associate Professor Department of Soil, Water and Environmental Science The University of Arizona Maricopa, Arizona channah@cals.arizona.edu 58 Abstract The San Francisco River is impaired due to E. coli exceedances, posing health risks to visitors and the community. Minority populations may be of particular concern due to environmental and economic disproportions. In 2012, public perception surveys were conducted to evaluate water quality attitudes towards the San Francisco River in Clifton, Arizona, composed of about 60% Hispanic population. In general 66% of respondents indicate they are concerned with poor water quality and their health. Survey findings will be used to better tailor outputs appropriate for the targeted audience, namely the local Hispanic population and enhance watershed education in the community. Keywords: community outreach, Hispanic populations, water quality 59 Introduction The Upper Gila Watershed is composed of the San Francisco River (SFR) in northeastern Arizona. Portions of this river has been listed as impaired on the US EPA 303d list for Escherichia coli (E. coli) concentrations exceeding the regulatory standards for health protection. In 2012, a targeted Watershed Improvement Grant devised by the Gila Watershed Partnership (a local non-profit group) with the support of the Arizona Department of Environmental Quality (ADEQ), U.S. Environmental Protection Agency (EPA) and the University of Arizona (ADEQ, 2012) was developed to identify sources of contamination and ultimately reduce E. coli loading in the SFR. Clifton, Arizona the local community adjacent to the rivers of concern is composed of approximately 60% Hispanic. As part of the GWP targeted Watershed Improvement Grant, local stakeholders worked with the University of Arizona Cooperative Extension to collect water samples and used Microbial Source Tracking (MST), a bacterial genetic testing method commonly used to identify potential pollution sources. MST methods have been used (Layton et al., 2006; Seurinck et al., 2005; and Shanks et al, 2008) in conjunction with traditional microbiological methods to better understand surface water quality impairments, allowing for determination of specific sources of contamination. By identifying the sources of fecal contamination in the watershed, more informed decisions can be made regarding the most effective management practices implemented to mitigate pollutant loading from those sources. MST data coupled with anecdotal evidence suggests that the predominant source of contamination in the SFR is a result of human recreation impacts across the watershed 60 (Rivera and Rock, 2014, in review). Human sources of fecal pollution represent a serious health risk because of the high likelihood of the existence of human pathogens. Although information like this is critical to formulate solutions to proper watershed management, through past studies we have learned that successfully distinguishing the sources of fecal contamination will not alone reduce or eliminate disease associated with contaminated water unless these investigations are coupled with effective and targeted public outreach and education. This may be of particular importance when working with minority populations. Past research has determined that perceptions and attitudes are key factors that shape human decision-making and behavior (Armstrong, et al., 2012; Kaisser, Wolfing, & Fuhrer, 1999). Because culturally based attitudes and values can influence general orientation toward risk and uncertainty, it is reasonable to expect that factors differentiating individuals on the basis of shared experiences, values, and beliefs relevant to risk evaluation will be associated with nonequivalent perceptions in many situations (Cervantes et al., 2008). Taylor-Clark, Koh, & Viswanath (2007) state, people’s potential for social action and participation is influenced by how they perceive a social condition as a problem and the information that they have to mobilize and act on resolving that problem. It is also well understood that understanding different types of people in the community can help refine education and outreach messages (Prokopy et al., 2010; US EPA 2002, 2003; Coburn & Donaldson, 1997). Based on this body of knowledge, it is then appropriate to conclude that in order to serve the educational needs of the public about water quality, a better understanding of people’s concerns, priorities, and 61 willingness to implement practices designed to improve water quality is needed. Our current research aims to better understand the interaction between research and the public to promote greater understanding of the issues that affect water quality and human health specifically those of minority populations in Clifton, AZ. This article presents findings from a public perception survey aimed at: 1) identifying how Clifton minority residents perceive the effects of environmental risks on their own health (or if they recognize a risk at all); (2) what information is available to residents; and 3) how accessible is the information to local minority residents. Background Our team employed MST techniques designed to identify specific diagnostic sequences within the 16S rRNA Bacteroides genome present in feces from human and bovine sources. MST was coupled with traditional microbiological methods for E. coli bacteria (IDEXX Colilert Quantitray, Standard Method # 9223B, 1998) to determine the dominant sources of fecal contamination causing exceedances in the SFR. Of 70 water samples collected from July 2010 through November 2011 by University of Arizona Cooperative Extension or trained volunteers, 81% were positive for universal Bacteroides marker (Allbac). Of the 57 Allbac-positive samples, 68% show contributions of the humanspecific marker and 60% were positive for bovine-specific marker. While 28% of the total samples assayed showed elevated levels of E. coli (>235 MPN/100mL). This data demonstrates that MST can be used in conjunction with traditional microbiological 62 methods to better understand surface water quality impairments, allowing for determination of specific sources of contamination. Recently, the Upper Gila Watershed is exploding with development and a clash of urban and rural values threaten existing water supplies. Increased public awareness of environmental issues and possible solutions has spawned interest from a diverse community along with support of the local health officials and monetary support from ADEQ to reduce non-point source contamination from local residents. In recent years, this community has seen the inclusion of ranchers, farmers and miners in efforts to combat pollution in the SFR and is no longer limited to environmental organizations. Nonetheless, one of the major groups often underrepresented during community discussions on environmental issues, water quality, and human health is the large local Hispanic population. In order to better tailor future Cooperative Extension education and outreach efforts related to the sources of E.coli contamination in the SFR, our team developed survey methodologies, targeting the local Hispanic population. Materials and Methods For the purpose of this study, where little was known about perceptions of water quality in the Upper Gila Watershed, the survey provided insight on the participants’ perceptions. Our study took place in Clifton, Arizona; which is a rural community along the SFR. It is important to mention that Clifton, AZ is adjacent to Morenci, AZ which is home to the largest open-pit copper mine in the United States. A survey was developed to gather 63 information about water quality perceptions, water use, peoples’ attitudes, knowledge, and behaviors related to the water resources. Survey questions consisted of multiple choice and Likert scales questions and were provided in both English and Spanish and were conducted during the summer of 2012 and winter of 2013. All surveys were presented in written or oral format and were conducted during community and outreach events targeting local Hispanic community members. Additionally, a sub-set of surveys were passed out to local Hispanic leaders of the community to pass along to relatives, friends, and neighbors. A total of 150 surveys were deployed with 38 surveys completed for a response rate of 25%. During these events an informed consent script was read in English and/or Spanish. For subject’s that agreed to participate, a disclosure form was provided to them to keep and the survey was collected at the end of the meeting/event. The survey consisted of 6 main topics (Table 1). Table 1. Survey Topics Water Quality Water Use General Water Quality Attitudes Sources of Water Pollution Consequences of Poor Water Quality Information Transfer Results and Discussion Water Quality and Use Questions 1 related to water quality perceptions are presented in Figure 1. Understanding how the residents rated the quality of water of the SFR was important because the 64 responses provided insight on how they might use surface waters. Roughly, 84% of respondents consider the river safe for family picnics and activities near the river yet over 80% of the participants reported the SFR has poor water quality for drinking; and 39% agree the SFR has poor water quality for swimming. Additionally, the majority (34%) of the participants feel it is okay to eat locally caught fish in the SFR. We followed the water quality question by asking how often they use or come in contact with the SFR. Forty five percent of those surveyed come into contact with the SFR a few times a year, while 24% use the river once a month. Only 13% reported using the river every day, compared to 11% never coming into contact with the river at all. Percent of Respondents (%) 100 Poor Okay Good Don't Know 80 60 40 20 0 1 2 3 Water Activities Figure 1. Water quality rating of the local river: (1) eating locally caught fish, (2) swimming, (3) Picnicking and Family activities and (4) drinking. 4 65 General Water Quality Attitudes Figure 2 represents the question of general water quality attitudes. Of those surveyed, 45% strongly agree their actions impact the river and it is important to protect water quality even if it slows economic development. On the other hand, only 5% strongly disagree with it is important to protect the river even if it slows economic development. Thirty seven percent strongly agree, 50% agree, 7% neither agree nor disagree, and 2% disagree and strongly disagree that it is their personal responsibility to help protect water quality. When asked about if quality of life in their community depends on “acceptable” water quality, 32% strongly agree, 39% agree, and 18% neither agree nor disagree. To get a better understanding if residents would be willing to take the necessary actions to mitigate pollution problems, we asked respondents if they would invest monetary support to improve water quality in the river and 21% strongly agree with the majority of respondents agree (47%). When asked if economic stability of their community depends upon clean rivers 26% strongly agree and agree with 11% neither agree nor disagree and 2% disagree. The participants were also asked if it is important to protect water quality even if it costs them more and 24% strongly agree, 29% agree and 5% neither agree nor disagree and disagree. The following question received very similar responses when asked about if the way they care for their property can influence water quality in rivers with 24% strongly agree, 29% agree, 7% neither agree nor disagree, 2% disagree and strongly disagree. Toward the end of these questions the responses starting shifting more to the left side of the scale with more negative responses. We followed the previous question by asking what you do on your property doesn’t have much impact on overall 66 water quality and 16% agree, 5% neither agree nor disagree, with the highest being 24% disagree and 18% strongly disagree. Eleven percent of respondents agree that taking action to improve rivers and streams is too expensive for them, while 13% neither agree nor disagree, 21% disagree and 18% strongly disagree. Therefore, we can infer that the majority of residents agree that they would financially support river improvement projects. Lastly, 26% strongly disagree and 34% disagree that it is okay to reduce water quality to promote economic development with 5% of those surveyed neither agreeing nor disagreeing. 67 Strongly Disagree Disagree Neither Agree nor Disagree Agree My actions have an impact on rivers and 5 11 39 streams It is important to protect water quality even if it slows economic development 5 5 18 45 50 8 18 I would be willing to pay more to improve rivers 25 and streams 21 The economic stability of my community 2 11 depends upon clean rivers and streams 37 39 32 47 26 26 5 5 29 24 The way that I care for my property can 22 7 influence water quality in rivers and streams 29 24 It is important to protect water quality even if it costs me more What I do on my property doesn't have much impact on overall water quality 18 24 5 Taking action to improve rivers and streams is too expensive for me 18 21 13 It is okay to reduce water quaility to promote economic development 45 24 It is my personal responsibility to help protect 22 7 water quality The quality of life in my community depends on good water quality in local streams and rivers Strongly Agree 26 34 21 16 11 5 Figure 2. Respondents’ attitudes (%) of general water quality in the San Francisco River. Sources of Water Pollution As mentioned at the beginning of the paper, our team has identified sources of water contamination in the SFR but we did not know what the residents thought were the sources of contamination. The questions in the survey allowed us to gain insight to what are the residents’ opinions regarding the sources of contamination. In question 4, we listed sources of water quality pollution to get the opinion of how much of a problem are 68 the following sources in the SFR (Figure 3). When asked about discharges from industry and sewage treatment plants, 29% and 24% respectively, think it is a severe problem. Of those surveyed, 26% agree soil erosion from construction sites to be a severe problem, while 24% and 26% respectively agree soil erosion from farm fields and stream channels to be a moderate problem. Grazing related sources (39%) and manure from farm animals (37%) agree this is a moderate problem. Based on the results of our previous research, recreational activities and improperly maintained septic systems are potential sources of contamination but only 21% of residents think this is moderately to severe problem. 69 Not a Problem Slight Problem Moderate Problem Pet waste such as dogs or cats Soil erosion from farm fields Manure from farm animals Improperly maintained septic systems Grazing-related sources Soil erosion from construction sites 26 24 11 Droppings from birds, ducks, or waterfowl 24 11 7 37 7 21 18 21 39 7 7 11 21 5 7 13 18 18 Lawn fertilizers and pesticides 7 11 7 18 18 Removal of riparian vegetation 5 5 18 24 18 16 16 21 18 26 7 13 Animal feeding operations 7 5 18 2 Grass clippings and leaves 11 13 26 11 Agricultural fertilizers or redevelopment 5 7 24 18 5 13 2 Soil erosion from stream channels 21 18 Discharges from sewage treatment plants Stormwater runoff from strees,… 2 11 11 18 29 18 21 Don't Know 5 18 26 16 5 13 11 13 7 16 11 Discharges from industry into streams… 5 7 5 Land development or redevelopment 18 29 18 Severe Problem 7 26 18 2 13 Figure 3. Respondents’ opinions (%) on how much of a problem the following sources are in the San Francisco River. Consequences of Poor Water Quality Because poor water quality can lead to a plethora of diseases and estimated to cause about 10% of all diseases worldwide (Robles Morua et al., 2011), we felt it was imperative to survey respondents about consequences of poor water quality. Table 2, shows the distribution of responses regarding perception of the consequences associated 70 with poor water quality. The majority agree there is a severe problem in the SFR. After inquiring about consequences of poor water quality, we asked if they are concerned with poor water quality and their health. Over half of the respondents, 66% are concerned with poor water quality and their health; on the other hand, 24% indicated that they are not concerned (data not shown). Not a Slight Moderate Severe Problem Problem Problem Problem Don't know Contaminated Drinking water 16% 18% 18% 26% 21% Polluted/ closed swimming areas 16% 7% 42% 21% 11% Contaminated fish 2% 5% 11% 32% 13% 7% 13% 7% 13% 18% 2% 2% 5% 34% 18% 16% 11% 21% 42% 8% 16% 16% 24% 39% 5% 0% 11% 13% 34% 7% 5% 7% 11% 29% 11% 2% 7% 2% 39% 11% Odor 24% 18% 18% 29% 7% Lower property values 5% 2% 13% 21% 21% Increase in water/ sewage bill Loss of desirable fish and wildlife species Reduced beauty of river and streams Reduced opportunities for water activities such as boating, canoeing and fishing Reduced quality of water activities Excessive aquatic plants or algae Fish kills 71 Developing skin rash Developing Diarrhea Exposure to disease causing bacteria 2% 11% 5% 29% 16% 5% 7% 5% 26% 16% 5% 18% 21% 26% 26% Table 2. The distribution of respondents regarding poor water quality. (Numbers in bold represent highest response rates for each individual category). Information Transfer The final questions of the survey asked respondents about where they obtained their information regarding water quality. This is important as new resources are developed, it is imperative that the local community sees them as available and from a trusted source. Sixty eight percent of residents get their information regarding their local water quality in the newspaper, brochures, and/or pamphlets (Figure 4). Almost 61% claimed obtaining information from conversations with others. Clifton, Arizona has a population of almost 3,000 people and as mentioned before it is composed of around 56% Hispanic, the majority being Mexican American which is a very closely knitted community. Of those surveyed, 16% get information from the City or Public Health office, while 21% use other sources. Only 7% obtain water quality information by conducting their own inspection (visually) and 5% by attending workshops and/or demonstrations. Lastly, 2% of residents learn about their local water via television or radio. 72 Television, 2 Radio 2 Other, 21 City/Public Health Office, 16 Workshops/demonst Newspaper/ ration, 5 factsheet/brochure, 68 Own inspection, 7 Conversations with others, 61 Figure 4. Ways used by residents (%) to get information about water quality. Challenges and Recommendations The main goal of our study was to assess water quality perceptions among Hispanic in order to inform future outreach and education efforts. Unfortunately, several challenges engaging the Hispanic community described below: Hispanics are more at risk from waterborne diseases yet they are less likely to perceive the river as a risk (Morua et al., 2011). Low health and science literacy among Clifton residents, in particular among the Hispanic population. The health of the SFR is not a primary priority among many local community groups (personal communication). Lack of community of involvement, in particular among the Hispanic population. 73 Hispanic population turning down survey completion either due to lack in agency trust, fear or simply do not want to get involved. Hispanic families living in the area have a traditional, multi-generational attachment to the river and the SFR is a local attraction that local families and tourists enjoy. Therefore we can make several recommendations to engage the greater Hispanic population. Target messaging during the summer and fall seasons. Verbiage in outreach materials will target 4th grade reading level. All outreach material will be bi-lingual, in English and Spanish. Trusted Hispanic leaders will be engaged to work with the Hispanic community to disseminate information. Conclusions A number of studies have assessed perceptions regarding the causes of waterborne disease and the results have been mixed, with most studies finding that individuals did not understand that contaminated water was putting them at great risk of waterborne disease (Morua et al., 2011). Our study supports these findings with survey results suggesting that attitudes and perceptions are vague toward water quality and public health in Clifton, AZ. It was not surprising to see mixed attitudes on water quality with 80% reporting the SFR has poor water quality for drinking and 39% agree the SFR has poor water quality for swimming. Yet, 84% consider the river safe enough for picnics and activities near the water. Also, it was interesting to note participants’ opinions regarding 74 consequences of poor water quality with 66% of respondents indicating that they are concerned with poor water quality and their health. This is particularly surprising since individuals do not feel that their current activities constitute any added risk to their health, yet their responses indicted that they believe water quality in the SFR is poor. Individuals’ perceptions are shaped by beliefs about how others in their community perceive the risks (Morua et al, 2011). Therefore, the responses may not be providing a clear answer if the participants are establishing their responses to what they believe the rest of their community feels. As previously mentioned, Clifton is a very tight knit community so it was not unexpected that the majority of the respondents (61%) get water quality information by having conversations with other people and 68% from newspapers, factsheets and brochures. This information is particularly important for benefiting Cooperative Extension outreach efforts in this community. Of the respondents, our target audience, Hispanics, was recorded as the least involved for a number of locally relevant reasons including mistrust of outside community groups and lack of involvement in environmental issues. Future steps in this work in cooperation with ADEQ, GWP, and the University of Arizona, will be to use survey information to inform minority groups such as Mexican Americans and engage them about local environmental issues and potential risks. To successfully engage Hispanic audiences, particularly first- and second- generation individuals, programs must be culturally responsive; in other words, the program must reflect cultural traditions, beliefs and values of the people (Koss-Chiono & Vargas, 1999; Hobbs, 2004). Based on the survey responses, our team worked to develop two peer reviewed Extension publications 75 entitled; Microbial Source Tracking: Watershed Characterization and Source Identification (Arizona Cooperative Extension, #AZ1547) and Water Quality, E. coli, and Your Health (#AZ1624). Publications have been developed in both English and Spanish and will be part of future outreach to this and other Arizona communities. This information transfer media ranked the highest in trusted resources among survey respondents and will aid in information dissemination to the targeted population. Additionally, because connections between poor water quality and human health consequences seemed to indicate low science/health literacy, outreach activities will aim to educate the community about water quality and human health. Basic principles of disease, sanitation, at-home impacts on environmental health, point source and non-point source pollution, and how to prevent illness within the community will be the main themes, workshops or outreach events. It is our goal that these survey findings can be used to better tailor outputs appropriate for the targeted audience, namely the local Hispanic population. Our findings, although limited due to low level of participation, overall, add to the understanding perceptions of water quality and health risks in this rural community and can lend towards enhance outreach practices in other similar communities. 76 References American Public Health Association, American Water Works Association, and Water Environment Federation. (1998). Standard Methods for the Examination of Water and Wastewater 20th Edition. Eds. Clesceri, L. S., Greenberg, A. E. and Eaton, A. D. United Book Press Inc, Baltimore, MD. Armstrong, A., Stedman, R. C., Bishop, J. A., & Sullivan, P. J. (2012). What’s a Stream Without Water? Disproportionality in Headwater Regions Impacting Water Quality. Journal of Environmental Management, 50: 849-860. Arizona Department of Environmental Quality. (2012). Watershed Improvement Plan San Francisco and Blue Rivers. [On-line]. Available at: http://lists.azdeq.gov/environ/water/watershed/download/san_fran_blue-wip.pdf Cervantes, O., Espejel, I., Arellano, E., & Delhumeau, S. (2008). Users’ Perception as a Tool to Improve Urban Beach Planning and Management. Journal of Environmental Management, 42: 249-264. Coburn, J., & Donaldson, S. (1997). Reaching a New Audience. Journal of Extension [On-Line], 35(1) Article 1FEA3. Available at: http://www.joe.org/joe/1997february/a3.php Hobbs, B. B. (2004). Latino Outreach Programs: Why They need to be Different. [OnLine], 42(1). Available at: http://www.joe.org/joe/2004august/comm1.php Koss-Chioino, J. & Vargas, L. (1999). Working with Latino youth: Culture, development, and context. San Francisco: Jossey-Bass Publishers. Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., & Sayler, G. (2006). Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water. Journal of Applied and Environmental Microbiology, 72: 4214-4224. Morua, A. R., Halvorsen, K. E., & Mayer, A. S. (2011). Waterborne Disease-Related Risk Perception in the Sonora River Basin, Mexico. Journal of Risk Analysis, 31: 866-878. Prokopy, L. S., Molloy, A., Thompson, A., & Emmert, D. (2010). Assessing Awareness of Water Quality: Comparing Convenience and Random Samples. Journal of Extension [On-Line], 48(3) Article 3FEA2. Available at: http://www.joe.org/joe/2010june/a2.php Kaiser, F. G., Wolfing, S., & Fuhrer, U. (1999). Environmental Attitude and Ecological Behaviour. Journal of Environmental Psycology, 19: 1-19. 77 Rivera, B. and Rock, C. (2011). Microbial Source Tracking: Watershed Characterization and Source Identification. Arizona Cooperative Extension [On-Line], AZ1547. Available at: http://cals.arizona.edu/pubs/water/az1547.pdf Rivera, B. and Rock, C. (2014). Water Quality, E. coli, and Your Health. Arizona Cooperative Extension, AZ1624. Seurinck, S., Defoirdt, T., Vestraete, W., & Siciliano, S. D. (2004). Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Journal of Environmental Microbiology, 7: 249-259. Shanks, O. C., Atikovic, E., Blackwood, A. D., Noble, R. T., Santo Domingo, J., Seifring, S.,Sivaganesan, M., & Haugland, R. A. 2008. Quantitative PCR for genetic markers of cattle fecal pollution. Journal of Applied and Environmental Microbiology, 74: 745-752. Taylor-Clark, K., Koh, H., & Viswanath, K. (2007). Perceptions of Environmental Health Risks and Communication Barriers among Low-SEP and Racial/Ethnic Minority Communities. Journal of Health Care for the Poor and Underserved, 18: 165–183. U.S. Environmental Protection Agency. (2002). Community culture and the Environment: A Guide to Understanding a Sense of Place. US EPA Washington, D.C. U.S. Environmental Protection Agency. (2003). Getting in Step: A Guide for Conducting Watershed Outreach Campaigns. US EPA Washington, D.C. 78 APPENDIX C MICROBIAL SOURCE TRACKING: WATERSHED CHARACTERIZATION AND SOURCE IDENTIFICATION (Published in Arizona Cooperative Extension) Berenise Rivera, MPH, PhD Student, Soil/Water and Environmental Science Dr. Channah Rock, Extension Water Quality Specialist/Assistant Professor, Soil/Water and Environmental Science Water Quality and Fecal Contamination. Water quality has been a concern for numerous stakeholders and has been monitored for many decades; in particular since the enactment of the Clean Water Act in 1972. However, more than 30 years after the Clean Water Act was implemented, a significant fraction of US rivers, lakes, and estuaries continue to be classified as failing to meet their designated uses due to high levels of fecal bacteria (US EPA 2005). As a consequence, protection from fecal contamination and bacteria is one of the most important and difficult challenges facing environmental scientists, regulators, and communities trying to safeguard public water supplies as well as waters used for recreation (primary and secondary contact). Traditional water quality monitoring has helped improve water sanitation to protect public health but also led to economic losses due to closures of recreational beaches and surface waters. Additionally, solutions to contamination are not always readily apparent and easily identifiable. The ability to discriminate between 79 sources of fecal contamination is necessary for a more defined evaluation of human health risks and to make waters safe for human use. The potential sources of fecal contamination causing these impairments can be classified into two groups: point sources that are easily identifiable (e.g., raw and treated sewage and combined sewer overflows) and non-point sources that are diffuse in the environment and may be difficult to identify (e.g., agriculture, forestry, wild-life, and urban runoff) (Okabe et al. 2007). Understanding the origin of fecal contamination is paramount in assessing associated health risks as well as identifying the actions necessary to remedy the problem (Scott et al. 2002). As a result, numerous methods have been developed to identify fecal contamination as well as differentiate between these sources of pollution. Accurately identifying these sources can help to facilitate the elimination of waterborne microbial disease as a leading threat to public health (Simpson, Santo Domingo and Reasoner 2002) (Figure 1). Fecal coliform & Escherichia coli. Indicator bacteria are used to predict the presence/absence or minimize the potential risk associated with pathogenic microorganisms (Scott et al. 2002). Fecal coliform are a group of bacteria that originate in the feces of mammals and include the genera Escherichia and Klebsiella (Figure 2). These indicator bacteria are identified in the laboratory using certain tests to evaluate their ability to use lactose as a food source. Escherichia coli or E.coli are fecal coliform bacteria that have been extensively used to indicate the presence of human pathogens in water (Parveen et al. 2001). A pathogen is 80 defined as a microorganism that has the potential to make a healthy individual sick. Methods such as the IDEXX Colilert and Colisure (IDEXX Laboratories Inc., Westwood, Maine) have been widely used by municipalities, regulatory agencies, researchers, and volunteers to evaluate the health and safety of water. These methods work by estimating the concentration or amount of E.coli in a water sample that is able to grow and produce a color change using specified media (Figure 3). E.coli are widely used as indicators of fecal contamination due to the fact that cultivation and detection methods are relatively inexpensive, little training is needed to perform tests, and their presence may indicate the presence of pathogens. Due to the many health risks E. coli presence can pose, entities such as the US EPA and State Departments of Environmental Quality (DEQ) have implemented ways to assess and regulate waters containing E.coli. Regulatory levels of E.coli have been establish to determine if a water is suitable for partial or full body contact based on an acceptable human health risk. According to the US EPA, partialbody contact (PBC) means the recreational use of surface water that may cause the human body to come into direct contact with the water, but normally not to the point of complete submergence. The use is such that ingestion of the water is not likely and sensitive body organs, such as the eyes, ears, or nose, will not normally be exposed to direct contact with the water. Full-body contact (FBC) means the use of surface water for swimming or other recreational activity that causes the human body to come into direct contact with the water to the point of complete submergence. The use is such that ingestion of the water is likely and sensitive body organs, such as the eyes, ears, or nose, may be exposed to direct contact with the water. Numerous epidemiology studies have 81 been conducted worldwide to evaluate the association between recreational water quality and adverse health outcomes including gastrointestinal (GI) symptoms, eye infections, skin irritations, ear, nose and throat infections and respiratory illness, and have indicated that the rates of some adverse health outcomes are higher in swimmers compared with non-swimmers (Soller et al. 2010). Concentrations of E.coli cannot exceed 575 Colony Forming Units (CFU) per 100 mL for partial body contact (PBC) while full body contact (FBC) cannot exceed 235 CFU per 100 mL for human health protection and regulatory purposes. This regulatory value for FBC equates to the acceptable risk of approximately 8 cases of gastrointestinal illness (diarrhea) per 1000 swimmers per year (US EPA 2009). Although the presence of E.coli in water indicates the presence of fecal contamination and potential pathogens, it has been established that most warm-blooded animals can release fecal coliform bacteria and E.coli to a body of water (Buchan, Alber and Hodson 2001). Consequently, the presence of E. coli in water is not specific to human sources of pollution. Fecal coliform bacteria are found in both human and animal feces and thus, may present a unique tool for tracking sources or contamination. Tracking and monitoring the source of contamination is critical for problem identification and remediation (Fong, Griffin and Lipp 2005). The most widely used method for measuring fecal pollution is to quantify viable fecal coliform bacteria by culturing them. However, culture based methods do not identify the source of fecal contamination (Field and Bernhard 2000). 82 What is Microbial Source Tracking? Microbial Source Tracking (MST) methods are intended to discriminate between human and non-human sources of fecal contamination, and some methods are designed to differentiate between fecal contamination originating from individual animal species (Griffith, Weisberg and McGee 2003). MST is an active area of research with the potential to provide important information to effectively manage water resources (Stoeckel et al. 2004). MST methods are typically divided into two categories. The first category is called library-dependent, relying on isolate-by-isolate identification of bacteria cultured from various fecal sources and water samples and comparing them to a “library” of bacterial strains from known fecal sources. Library-dependent methods require the development of biochemical (phenotypic) or molecular (genotypic) fingerprints for bacterial strains isolated from suspected fecal sources (US EPA 2005). These fingerprints are then compared to developed libraries for classification. The use of fecal bacteria to determine the host animal source of fecal contamination is based on the assumption that certain strains of fecal bacteria are associated with specific host animals and that strains from different host animals can be differentiated based on phenotypic or genotypic markers (Layton et al. 2006). Library-dependent methods tend to be more expensive and require more time and experienced personnel completing the analysis due to the time it takes to develop a library (Figure 4). Additionally, one of the major disadvantages to librarydependent methods is that libraries tend to be temporally and geographically specific. 83 While this can be useful for a specific location, they are generally not as applicable on a broader watershed scale or on statewide issues. The second category is called library-independent, and is based on the detection of a specific host associated genetic marker or gene target identified in the molecular material isolated from a water sample. These methods can help identify sources based on a known host-specific characteristic (genetic marker) of the bacteria without the need of a “library”. One of the most widely used library-independent approaches utilizes polymerase chain reaction (PCR) to amplify a gene target that is specifically found in a host population (Shanks et al. 2010). PCR enables researchers to screen genetic material from bacteria (e.g., deoxyribonucleic acid [DNA] or ribonucleic acid [RNA]) isolated from a water sample for a specific sequence or target in relatively short amount of time (Figure 5). These methods do not depend on the isolation of DNA directly from the original source, although some methods often require a pre-enrichment to increase the sensitivity of the approach (US EPA 2005). What MST methods are currently being used? Recently there has been an effort to better understand the various types of MST methods available as well as which methods are most useful for the goals of source identification and watershed characterization. According to the US EPA, while there has been significant progress in the past 10 years towards method development; variability among performance measurements and validation approaches in laboratory and field studies has led to a body of literature that is very difficult to interpret (US EPA 2005). Comparison 84 studies have shown that no single method is clearly superior to the others (US EPA 2005). Therefore, no single method has emerged as the method of choice for determining sources of fecal contamination in all fecal impaired water bodies. However, using the appropriate method and appropriate indicator, sources of fecal contamination can be found and characterized as to animal or human origin (Simpson, Santo Domingo and Reasoner 2002). MST based on identification of specific molecular markers can provide a more complete picture of the land uses and environmental health risks associated with fecal pollution loading in a watershed than is currently possible with traditional indicators and methods (Jenkins et al. 2009). MST methods have the ability to identify “who” is contributing to the pollution whereas traditional culture based methods only tell you “if” and “when” fecal contamination is present. The following table describes existing MST methods that are currently being used and the general purposes for each (Table 1). A recent review of the literature has identified an increase in library-independent methods available for watershed characterization. In particular, host-specific bacterial and viral PCR as well as host-specific quantitative PCR seem to have led recent method development. In theory, host-specific PCR (library-independent MST) uses genetic marker sequences that are not only specific to fecal bacteria, but are also specific to the host species that produced the feces, allowing discrimination among different potential sources (Field, Bernhard and Brodeur 2003). Host-specific PCR holds promise as an effective method for characterizing a microbial population without first culturing the organisms in question (Scott et al. 2002). Furthermore, these methods are cost effective, rapid, and potentially more specific than library-dependent methods. It is anticipated that 85 these host-specific molecular methods will continue to develop with emphasis on those methods using the quantitative polymerase chain reaction (qPCR) technique that measures the amount of microbial DNA present in the water sample rather than simply detecting a presence or absence of microbial DNA (Santo Domingo et al. 2007). By quantifying the amount of microbial DNA, comparisons can be made regarding the relative impacts of a specific source to a specific location within the watershed. In particular, one of the most widely cited bacteria analyzed for library-independent MST is Bacteroides. What is Bacteroides? The genus Bacteroides contains Gram negative, nonspore-forming, non-motile, anaerobic rod bacteria generally isolated from the gastrointestinal tract (GI-tract) of humans and animals (Smith, Rocha and Paster 2006). As members of the indigenous flora, they play a variety of roles that contribute to normal intestinal physiology and function. These include beneficial roles such as polysaccharide breakdown or nitrogen cycling (Smith, Rocha and Paster 2006). According to Smith et al. (2006) Bacteroides generally cause opportunistic infections that can occur any time the integrity of the mucosal wall of the intestine is compromised such conditions are gastrointestinal surgery, perforated or gangrenous appendicitis, perforated ulcer, diverticulitis, trauma and inflammatory bowel disease. Another important aspect of Bacteroides biology is their lack in ability to proliferate in the environment as well as their potential to survive in the environment at a rate directly proportional to the pathogens of concern. Bacteroides depend primarily on 86 temperature and presence of predators, and have been found to survive for up to six days under oxygen stressed conditions (Field and Dick 2004) similar to other pathogens. Due to the abundance of this bacterium in human and animal feces, it has allowed for host-related analysis targeting genes present in the Bacteroides genome. Layton et al. (2006) states, bacteria belonging to the genus Bacteroides have been suggested as alternative fecal indicator to E. coli or fecal coliform bacteria because they make up a significant portion of the fecal bacteria population, have little potential for growth in the environment, and have high degree of host specificity that likely reflects differences in host animal digestive systems. Numerous methodologies have been designed to target specific diagnostic sequences within the Bacteroides 16S rRNA gene (which is vital for protein synthesis and therefore present in all bacteria) present in feces from different animals. Katherine Field and colleagues, in particular, have performed extensive research into the use of Bacteroides 16S rRNA-based PCR assays for MST. Field and Bernard (2004) developed 16S rRNA gene makers from Bacteroides to detect fecal pollution and to distinguish between human and ruminant (e.g., bovine, goat, sheep, deer, and others) sources by PCR. Developing MST methods specific to molecular markers within the target gene will allow differentiating between human and ruminant associated Bacteroides, therefore identifying the possible source of contamination. As Scott et al. (2002) mentions, this approach offer the advantage of circumventing the need for a culturing step, which allows a more rapid identification of target organism. 87 While progress has been made in identifying genetic markers that are useful for MST, few studies have evaluated how these molecular markers used as MST targets vary temporally and spatially following fecal contamination of surface waters (Bower et al. 2005). There are several studies that have used MST methods; in particular hostassociated PCR-based assays targeting Bacteroides genetic markers to investigate the sources and levels of fecal pollution in recreational water and watersheds. In a study conducted by Gourmelon et al. (2007), three estuaries were compared by PCR using human-specific Bacteroides markers in combination with human- and animal-specific targets. PCR was found to be a reliable indicator of fecal contamination. Bacteroides was observed in 95% of fecal samples in all sewage treatment plant and pig liquid manure. A separate study targeting Bacteroides, Shanks et al. (2010), compared seven PCR and qPCR assays targeting Bacteroides genes reported to be associated with either ruminant or bovine feces. PCR indicated prevalence ranged from 54% to 85% for all DNA extracts from 247 individual bovine fecal samples and specificity (how well the PCR assay detected known bovine fecal samples) ranged from 76% to 100% for the assays studied. A previous study by Griffith, Weisberg and McGee (2003), using blind samples demonstrated that Bacteroides source-specific MST methods identified fecal sources correctly when the sources comprised as little as 1% of the total fecal contamination in the samples. While a wealth of knowledge exists in the literature, there are still many ongoing MST studies targeting the 16S rRNA Bacteroides gene to improve detection and watershed characterization. 88 Although Bacteroides MST has been useful for pollution characterization, it is still an emerging science and research is currently being done to validate publish methods and better understand the effectiveness of available technologies. Extensive field testing is ongoing to determine the efficacy of published assays and the geographic distributions of presumptively human-specific markers (McLain et al. 2009). Several recent studies have described testing of feces from domestic animals, livestock, bird and mammal wildlife as well as fish and other aquatic species for cross amplification with human assays and molecular markers previously thought to be human specific (McLain et al. 2009). Therefore, it is critical that MST based methods be evaluated on a watershed by watershed basis to ultimately understand the utility of the methods for accurate pollution characterization. MST Supporting Watershed Characterization and Source Identification in Arizona. The Arizona Department of Environmental Quality (ADEQ) was established by the Arizona Legislature in 1986. ADEQ’s goal is to protect and enhance public health, welfare, and the environment in Arizona. Today, ADEQ manages a variety of programs to bring awareness of the water issues Arizona is currently facing. Also, ADEQ uses programs to improve the welfare and health of Arizona’s citizens through ensuring that water resources meet regulatory standards. This regulatory agency maintains a 303d list of locations that do not meet clean water regulatory standards across the state of Arizona (ADEQ 2010). Section 303d requires total maximum daily loads (TMDL) be established for the impaired waters by states, territories, and authorized tribes with oversight by the 89 US EPA (Simpson, Santo Domingo and Reasoner 2002). A TMDL is defined as the maximum amount of a pollutant the water body can receive and still meet regulated limits for that pollutant. As of 2008, ADEQ listed 17 impaired watersheds throughout the state of Arizona on the 303d list due to E. coli presence higher than the set standards (US EPA 2008). It is anticipated that the number of impaired watersheds will increase by the year 2012. ADEQ works diligently to bring those impaired watersheds to standard. Recently, an approach used by the ADEQ section tasked with TMDL implementation has involved intensive water quality monitoring by trained volunteers coupled with the use of innovative MST methods. This approach aims to better understand and outline the courses of action necessary to restore impaired waters and to protect and maintain unimpaired waters across the State of Arizona. As part of this approach, local stakeholder driven watershed groups and the State agency have begun to collaborate with research institutions, the University of Arizona and Northern Arizona University, to utilize MST techniques to identify sources of fecal bacteria and microbial contamination within impaired watersheds. The objective of this approach is to identify and appropriately characterize the pollutant sources causing the impairments. In watersheds where sources are not known or understood, MST techniques can help to identify and also eliminate potential sources of fecal bacteria. To date, over 181 surface water samples have been collected by volunteers trained by faculty, staff and students from the University of Arizona Cooperative Extension in three watersheds currently classified as impaired for E.coli bacteria by ADEQ (Figures 6, 7 and 90 8). Research at the University of Arizona is underway to evaluate currently published MST methods that produce reliable data from these watersheds for TMDL development and implementation. MST methods were specifically chosen within these select regions in the State due to the anticipated source(s) of bacteria not visibly obvious in these watersheds. More specifically, methods were selected to differentiate between Human and Bovine sources of Bacteroides present in volunteer collected water samples. Each of the different watersheds included in this study has different land-use characterization (urban vs. rural) and potential inputs within their area. Using the methods mentioned above to identify the sources of fecal pollution will empower ADEQ to work with stakeholders within the community to monitor and remediate locations contributing to contamination with the ultimate intent to de-list impaired waters of Arizona. 91 References Arizona Department of Environmental Quality. 2010 Water Quality [Online] http://www.azdeq.gov/environ/water/index.html. Bower, P. A., Scopel, C. O., Jensen, E. T., Depas, M. M., and McLellan, S. L. 2005. Detection of Genetic Markers of Fecal Indicator Bacteria in Lake Michigan and Determination of Their Relationship to Escherichia coli Densities Using Standard Microbiological Methods. Appl. Environ. Microbiol. 71(12): 8305-8313. Buchan, A., Alber, M., and Hodson, R. E. 2001. Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenetic spacer region. FEMS Microbiol. Ecol. 35: 313-321. Field, K. G., and Bernhard, A. E. 2000. Identification of Nonpoint Sources of Fecal Pollution in Coastal Waters by Using Host-Specific 16S Ribosomal DNA Genetic Markers from Fecal Anaerobes. Appl. Environ. Microbiol. 66: 1587-1594. Field, K. G., Bernhard, A. E., and Brodeur, T. J. 2003. Molecular Approaches To Microbiological Monitoring: Fecal Source Detection. Environ. Monitoring and Assessment 81: 313-326. Field, K. G., and Dick, L. K. 2004. Rapid Estimation of Numbers of Fecal Bacteroidetes by use of a Quantitative PCR Assay for 16S rRNA Genes. Appl. Environ. Microbiol. 70: 5695- 5697. Fong, T. T., Griffin, D. W., and Lipp, E. K. 2005. Molecular Assays for Targeting Human and Bovine Enteric Viruses in Coastal Waters and their Application for Library-Independent Source Tracking. Appl. Environ. Microbiol. 71: 2070-2078. Gourmelon, M., Caprais, M. P., Segura, R., Le Mennec, C., Lozach, S., Piriou, J. Y., and Rince, A. 2007. Evaluation of Two Library-Independent Microbial Source Tracking Methods To Identify Sources of Fecal Contamination in French Estuaries. Appl. Environ. Microbiol. 73: 4857-4866. Griffith, J. F., Weisberg, S. B., and McGee, C. D. 2003. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J. Wat. Health 1: 141-151. Jenkins, M. W., Sangam, T., Lorente, M., Gichaba, C. M., and Wuertz, S. 2009. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assay. Water Research 43: 4956-4966. 92 Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. 2006. Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water. Appl. Environ. Microbiol. 72: 4214-4224. McLain, J. E., Ryu, H., Kabiri-Badr, L., Rock, C. M., and Abbaszadegan, M. 2009. Lack of specificity for PCR assays targeting human Bacteroides 16S rRNA gene: crossamplification with fish feces. FEMS Microbiology Letters 299: 38-43. Okabe, S., Okayama N., Savichtcheva O., and Ito, T. 2007. Quantification of hostspecific Bacteroides–Prevotella 16SrRNA genetic markers for assessment of fecal pollution in freshwater. Appl. Microbiol. Biotechnol. 74: 890-901. Parveen, S., Hodge, N. C., Stall, R. E., Farrah, S. R., and Tamplin, M. L. 2001 Phenotypic and Genotypic Characterization of Human and Nonhuman Escherichia coli. Water Res. 35: 379-386. Santo Domingo, J. W., Bambic, D. G., Edge, T. A., and Wuertz, S. 2007. Quo Vadis Source Tracking? Towards a Strategic Framework for Environmental Monitoring of Fecal Pollution. Water Res. 41: 3539-3552. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J. 2002. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 68: 5796-5803. Shanks, O. C., White, K., Kelty, C. A., Hayes, S., Sivaganesan, M., Jenkins, M., Varma, M., and Haugland, R. A. 2010. Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution. Appl. Environ. Microbiol. 76: 1359-1366. Simpson, J. M., Santo Domingo, J. W., and Reasoner, D. J. 2002. Microbial Source Tracking: State of the Science. Environ. Sci. Technol. 36: 5279-5288. Smith, C. J., Rocha, E. R., and Paster, B. J. 2006. The Medically Important Bacteroides spp. in Health and Disease. Prokaryotes 7: 381-427. Soller, J. A, Schoen, M. E., Bartrand, T., Ravenscroft, J. E., and Ashbolt, N. J. 2010. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research 30: 1-18. Stoeckel, D. M., Mathes, M. V., Hyer, K. E., Hagedorn, C., Kator, H., Lukasik, J., O’Brien, T. L., Fenger, T. W., Samadpour, M., Strickler, K. M., and Wiggins, B. A. 2004. Comparison of Seven Protocols To Identify Fecal Contamination Sources Using Escherichia coli. Environ. Sci. Technol. 38: 6109-6117. 93 US Environmental Protection Agency. 2005. Microbial source tracking guide. Document EPA/600/R-05/064. U. S. Environmental Protection Agency, Washington, DC. US Environmental Protection Agency. 2008. Arizona 2008 Water Quality Assessment Report [Online] http://iaspub.epa.gov/waters10/attains_index.control?p_area=AZ#wqs US Environmental Protection Agency. 2009. Water Quality Standards [Online] http://www.epa.gov/waterscience/standards/wqslibrary/az/az_9_wqs.pdf US Environmental Protection Agency, Region 10. 2011. Using Microbial Source Tracking to Support TMDL Development and Implementation [Online] http://www.epa.gov/region10/pdf/tmdl/mst_for_tmdls_guide_04_22_11.pdf 94 Tables Table 1. Common Types of MST Methods (ref: US EPA 2011) Library-dependent Library-independent Culture-dependent Biochemical Antibiotic resistance Carbon utilization Molecular Rep-PCR PFGE Ribotyping Culture-independent Biochemical or Molecular Bacteriophage Bacterial culture Molecular Host-specific bacterial PCR Host-specific viral PCR Host-specific quantitative PCR 95 Table 2. Commonly Used Terms (ref. US EPA 2011) Commonly Used Terms: Biochemical (aka phenotypic) methods refer to the ability to physically observe a characteristic of the isolated bacteria that might have been acquired from exposure to different host species or environment. Examples may be the resistance to certain antibiotic or utilization of carbon or nutrient source. Culture-dependent methods rely on bacteria from water samples being grown or cultured in a lab. Colony Forming Units (CFU) refers to the unit of measure or the concentration of cultured bacteria. Culture-independent methods isolate and identify DNA directly from a water sample without first having to grow or culture the bacteria from the sample. Fecal Source refers to a human or animal host where a microbe originates in the fecal waste of that host. Depending on the specificity of an MST method, a fecal source might refer to a general group of hosts (e.g., all humans, all animals, or a group of animals such as ruminants), or a specific animal host (e.g., cattle, elk, dogs, etc.). Library-dependent methods identify fecal sources from water samples based on databases of genotypic of phenotypic fingerprints for bacteria strains of know fecal sources. Library-independent methods identify fecal sources based on known host-specific characteristics of the bacteria without the need of a library. Microbial Source Tracking (MST) refers to a group of methods intended to discriminate between human and non-human sources of fecal contamination. Some methods are designed to differentiate between fecal contamination originating from individual animal species. Microbial Strain is a genetic variant or subtype of a microorganism (e.g., bacterial species). Molecular (aka genotypic) methods utilize variations in the genetic makeup or the DNA of each individual organism or bacteria. This is often referred to as “DNA fingerprinting”. 96 Images/Figures Figure 1. Waterborne transmission of pathogens. 97 Total Coliform Bacteria Fecal Coliform Bacteria E. coli Pathogens Figure 2. Relationship between indicators and pathogens. 98 Figure 3. Visualization of a fecal contaminated water sample; cells fluorescing blue indicate the presence of E.coli in the water. 99 Figure 4. PhD student, Berenise Rivera, demonstrates sterile technique while assaying water samples for fecal bacteria. 100 Figure 5. DNA Extraction/Concentration. 101 Figure 6. Volunteer water quality monitoring team receives training from UA Cooperative Extension. 102 Figure 7. Volunteer water quality monitoring in the Santa Cruz River, AZ. 103 Figure 8. Environmental water samples collected in the field. 104 APPENDIX D SEGUIMIENTO DE ORIGEN MICROBIANO: CARACTERIZACIÓN DE CUENCAS E IDENTIFICACIÓN DE ORIGEN (Published in College of Agriculture and Life Sciences Cooperative Extension) Berenise Rivera, MPH, Candidata a Doctorado, Suelo / Agua y Ciencias Ambientales Dra. Channah Rock, Especialista en Calidad del Agua de extensión/ Profesor, Suelo / Agua y Ciencias Ambientales La Calidad del Agua y Contaminación fecal. La calidad del agua es una preocupación para numerosos grupos de interés y ha sido objeto de observación durante muchas décadas, en particular desde la promulgación de la Ley de Agua Limpia de 1972. Sin embargo, más de 30 años después de que se puso en práctica esta ley solo una fracción importante de los ríos, lagos y estuarios de Estados Unidos siguen siendo clasificados por no cumplir con su categoría de uso debido a los altos niveles de bacterias fecales (US EPA 2005). Como consecuencia, la protección contra la contaminación fecal y de bacterias es uno de los retos más importantes y difíciles que enfrentan los científicos ambientales, reguladores, y comunidades que tratan de proteger el suministro de agua pública, así como las aguas utilizadas para recreación (contacto primario y secundario). El monitoreo tradicional de calidad del agua ha ayudado a mejorar el saneamiento del agua para proteger la salud pública, pero también dio lugar a pérdidas económicas debido a los cierres de áreas recreativas de playas, lagos 105 y ríos. Además, las soluciones a la contaminación no siempre son fácilmente evidentes o identificables. La capacidad de discriminar entre las fuentes de contaminación fecal es necesaria para poder hacer una evaluación más definida de los riesgos para la salud humana y para poder hacer aguas seguras para uso humano. Las fuentes potenciales de contaminación fecal que causan estos trastornos se pueden clasificar en dos grupos: fuentes puntuales que son fácilmente identificables (por ejemplo, las aguas residuales crudas y tratadas y derrames de aguas negras combinadas) y las fuentes no puntuales que están difusas en el ambiente y pueden ser difíciles de identificar (por ejemplo, la agricultura, la silvicultura, la vida silvestre, y la escorrentía urbana) (Okabe et al. 2007). Comprender el origen de la contaminación fecal es de suma importancia en la evaluación de riesgos para la salud, así como la identificación de las acciones necesarias para solucionar el problema (Scott et al. 2002). Como resultado, numerosos métodos se han desarrollado para identificar la contaminación fecal, así como diferenciar entre estas fuentes de contaminación. La identificación precisa de estas fuentes puede ayudar a facilitar la eliminación de las enfermedades microbianas transmitidas por el agua como una amenaza principal para la salud pública (Simpson, Santo Domingo y Reasoner 2002) (Figura 1). Coliformes fecales y Escherichia coli. Bacterias indicadoras se utilizan para indicar la presencia / ausencia o reducir el riesgo potencial asociado con microorganismos patógenos (Scott et al. 2002). Los coliformes 106 fecales son un grupo de bacterias que se originan en las heces de mamíferos e incluyen los géneros Escherichia y Klebsiella (Figura 2). Estas bacterias indicadoras se identifican en el laboratorio con el uso de ciertas pruebas para evaluar su capacidad para utilizar lactosa como fuente de alimento. Escherichia coli o E.coli son bacterias coliformes fecales que se han utilizado extensivamente para indicar la presencia de patógenos humanos en agua (Parveen et al. 2001). Un patógeno se define como un microorganismo que tiene el potencial de hacer que un individuo sano se enferme. Métodos como el IDEXX Colilert y Colisure (IDEXX Laboratories Inc., Westwood, Maine) han sido ampliamente utilizados por los municipios, agencias reguladoras, investigadores y voluntarios para evaluar la salud y seguridad del agua. Estos métodos funcionan mediante la estimación de la concentración o cantidad de E. coli en una muestra de agua que es capaz de crecer y producir un cambio de color utilizando medios específicos (Figura 3). E.coli son ampliamente utilizados como indicadores de contaminación fecal, debido al hecho de que los métodos de cultivo y detección son relativamente baratos, se necesita poco entrenamiento para llevar a cabo las pruebas, y su presencia puede indicar la presencia de patógenos. Debido a los muchos riesgos de salud que la presencia de E. coli puede plantear, entidades como la Agencia de Protección Ambiental (EPA) de los E.U. y el Departamento Estatal de Calidad Ambiental (DEQ) han puesto en práctica métodos para evaluar y regular el uso de aguas que contienen E. coli. Niveles reglamentarios de E. coli se han establecido para determinar si el agua es adecuada para el contacto parcial o total del cuerpo sobre la base de un riesgo aceptable para la salud humana. De acuerdo con el EPA de los E. U., el contacto corporal parcial (CCP) significa el uso recreativo de 107 las aguas superficiales que pueden causar que el cuerpo humano entre en contacto directo con el agua, pero por lo general no hasta el punto de inmersión completa. El uso es tal que la ingestión del agua no es probable y órganos más sensibles del cuerpo, como los ojos, las orejas o la nariz, no estará expuesto al contacto directo con el agua. Contacto corporal completo (CCC) significa el uso de las aguas superficiales para nadar u otra actividad recreativa que hace que el cuerpo humano entre en contacto directo con el agua hasta el punto de inmersión completa. El uso es tal que la ingestión de agua es probable y órganos del cuerpo sensibles, tales como los ojos, los oídos o la nariz, puede estar expuesto a contacto directo con el agua. Numerosos estudios epidemiológicos se han llevado a cabo en todo el mundo para evaluar la asociación entre la calidad de las aguas recreativas y los resultados adversos de salud, incluyendo síntomas gastrointestinales (GI), infecciones oculares, irritaciones de la piel, oído, nariz y garganta, infecciones y enfermedades respiratorias, y han indicado que las tasas de algunos resultados adversos de salud son más altos en nadadores en comparación con los no nadadores (Soller et al. 2010). Las concentraciones de E. coli no puede exceder 575 unidades formadoras de colonias (UFC) por 100 ml para el contacto corporal parcial (CCP), mientras que el contacto corporal completo (CCC) no puede exceder de 235 UFC por 100 ml a efectos de regulación y protección de la salud humana. Este valor normativo de CCC equivale al riesgo aceptable de aproximadamente 8 casos de enfermedad gastrointestinal (diarrea) por 1.000 nadadores por año (US EPA 2009). Aunque la presencia de E. coli en el agua indica la presencia de contaminación fecal y patógenos potenciales, se ha establecido que la mayoría de los animales de sangre 108 caliente pueden liberar bacterias coliformes fecales y E. coli a un cuerpo de agua (Buchan, Alber y Hodson 2001). En consecuencia, la presencia de E. coli en el agua no es exclusiva de fuentes de contaminación humanas. Bacterias coliformes fecales se encuentran en las heces humanas y animales, por lo tanto, pueden presentar una herramienta única para las fuentes de contaminación o de seguimiento. El seguimiento y control de la fuente de contaminación es crítica para la identificación de problemas y remediación (Fong, Griffin y Lipp 2005). El método más utilizado para medir la contaminación fecal es determinar la cantidad de bacterias coliformes fecales viables mediante el cultivo de ellos. Sin embargo, los métodos basados en la cultura no identifican la fuente de contaminación fecal (Field y Bernhard 2000). ¿Qué es el Seguimiento de Origen Microbiano? Métodos de seguimiento de fuente microbiana (SFM) están destinados a discriminar entre fuentes humanas y no humanas de contaminación fecal, y algunos métodos están diseñados para diferenciar entre contaminación fecal procedentes de especies animales individuales (Griffith, Weisberg y McGee 2003). SFM es un área activa de investigación con el potencial de proporcionar información importante para gestionar eficazmente los recursos hidráulicos (Stoeckel et al. 2004). Los métodos SFM suelen dividirse en dos categorías. La primera categoría es llamada biblioteca- dependiente, basándose en aislar-por-aislar la identificación de las bacterias cultivadas a partir de diversas fuentes fecales y muestras de agua y compararlas con una "biblioteca" de cepas bacterianas a partir de fuentes conocidas fecales. Métodos de 109 biblioteca-dependientes requieren el desarrollo de las huellas dactilares bioquímicos (fenotípica) o moleculares (genotípica) para las cepas bacterianas aisladas de presuntas fuentes fecales (US EPA 2005). Estas huellas son comparadas en las bibliotecas desarrolladas para la clasificación. El uso de bacterias fecales para determinar el origen animal huésped de contaminación fecal se basa en la suposición de que ciertas cepas de bacterias fecales se asocian con animales hospederos específicos y que las cepas de diferentes animales huésped pueden ser diferenciados en base a marcadores fenotípicos o genotípicos (Layton et al. 2006). Los métodos de biblioteca-dependientes tienden a ser más costosos y requieren más tiempo y personal con experiencia para completar el análisis debido al tiempo que se necesita para desarrollar una biblioteca (Figura 4). Además, una de las principales desventajas de los métodos de biblioteca-dependiente es que las bibliotecas tienden a ser temporal y geográficamente específicas. Mientras que esto puede ser útil para un lugar específico, por lo general no son muy aplicables a escalas más amplias como al nivel de una cuenca o estatal. La segunda categoría es llamada biblioteca-independiente, y se basa en la detección de un marcador genético asociado con un hospedero específico o sea un gen identificado en el material molecular aislado de una muestra de agua. Estos métodos pueden ayudar a identificar las fuentes de contaminación basadas en una característica conocida del huésped específico (marcador genético) de la bacteria sin la necesidad de una "biblioteca". Uno de los enfoques más ampliamente utilizados de los métodos bibliotecaindependientes es utilizar una reacción en cadena de la polimerasa (PCR) para amplificar un gen diana que se encuentra específicamente en una población huésped (Shanks et al. 110 2010). PCR permite a los investigadores detectar material genético de las bacterias (por ejemplo, ácido desoxirribonucleico [ADN] o ácido ribonucleico [ARN]) aislado de una muestra de agua para una secuencia diana específica o en período relativamente corto de tiempo (Figura 5). Estos métodos no dependen del aislamiento de ADN directamente de la fuente original, aunque algunos de estos métodos a menudo requieren un preenriquecimiento para aumentar la sensibilidad del método (US EPA 2005). ¿Qué métodos del SFM se están utilizando en la actualidad? Recientemente ha habido un fuerte interés en comprender mejor los diversos tipos de métodos de SFM disponibles, así como cuales métodos son más útiles para los objetivos de identificación de la fuente y la caracterización de cuencas. De acuerdo con la EPA de los E. U., mientras que ha habido un progreso significativo en los últimos 10 años hacia el desarrollo de métodos; desafortunadamente variabilidad de las mediciones de rendimiento y métodos de validación de los estudios de laboratorio y de campo ha dado lugar a un cuerpo de literatura que es muy difícil de interpretar (US EPA 2005). Estudios comparativos han demostrado que ningún método es claramente superior a los otros (US EPA 2005). Por lo tanto, ningún método ha surgido como el método preferido para la determinación de las fuentes de contaminación fecal en todos los cuerpos de agua fecalmente deteriorados. Sin embargo, usando el método e indicador apropiado, las fuentes de contaminación fecal se pueden encontrar y caracterizar en cuanto a origen animal o humano (Simpson, Santo Domingo y Reasoner 2002). El SFM basado en la identificación de marcadores moleculares específicos puede proporcionar una imagen 111 más completa de los usos del suelo y los riesgos ambientales para la salud asociados con la carga de contaminación fecal en una cuenca de lo que actualmente es posible con los indicadores y los métodos tradicionales (Jenkins et al. 2009). Los métodos SFM tienen la capacidad de identificar "quién" está contribuyendo a la contaminación, mientras que los métodos tradicionales basados en cultivos sólo te dicen "si" y "cuándo" la contaminación fecal está presente. En la siguiente tabla se describen los métodos SFM existentes que se están utilizando actualmente y los objetivos generales para cada uno (Tabla 1). Una reciente revisión de literatura ha identificado un aumento en los métodos de biblioteca-independientes disponibles para la caracterización de las cuencas hidrográficas. En particular, PCR bacteriana y viral de huésped específico, así como PCR cuantitativa de huésped específico parecen haber conducido el reciente desarrollo de métodos. En teoría, la PCR huésped específico (biblioteca-independiente SFM) utiliza secuencias marcadoras genéticas que no sólo son específicos para las bacterias fecales, pero también son específicos de la especie huésped que producen las heces, lo que permite la discriminación entre las diferentes fuentes potenciales (Field, Bernhard y Brodeur 2003). PCR específico del huésped promete ser un método eficaz para la caracterización de una población microbiana sin cultivar los organismos en cuestión (Scott et al. 2002). Además, estos métodos son rentables, rápidos, y potencialmente más específico que los métodos de biblioteca-dependientes. Se espera que estos métodos moleculares específicos del huésped continuarán desarrollándose con énfasis en los métodos que utilizan la reacción en cadena de la polimerasa cuantitativa (qPCR), el cual es una técnica que mide la cantidad de ADN microbiana presente en la muestra de agua 112 en lugar de simplemente detectar la presencia o ausencia de ADN microbiano (Santo Domingo et al. 2007). Al cuantificar la cantidad de ADN microbiano se pueden hacer comparaciones con respecto a los impactos relativos de una fuente específica a una ubicación específica dentro de la cuenca. En particular, una de las bacterias más citadas analizadas para la biblioteca independiente de SFM es Bacteroides. ¿Qué es Bacteroides? El género Bacteroides es anaeróbica e incluye bacteria Gram negativa, no forman esporas, son inmóviles, en forma de vara y generalmente son aisladas del tracto gastrointestinal (tracto GI) de los humanos y animales (Smith, Rocha y Paster 2006). Como miembros de la flora nativa desempeñan una variedad de funciones que contribuyen a la fisiología intestinal y función normal. Estos incluyen funciones benéficas como la disolución de polisacáridos o ciclo del Nitrógeno (Smith, Rocha y Paster 2006). De acuerdo con Smith et al. (2006) Bacteroides generalmente causan infecciones oportunistas que pueden ocurrir en cualquier momento y la integridad de la pared de la mucosa del intestino está comprometida. Tales condiciones son la cirugía gastrointestinal, apendicitis perforada o gangrenosa, úlcera perforada, diverticulitis, trauma y enfermedad inflamatoria del intestino. Otro aspecto importante de la biología de Bacteroides es la falta de capacidad de proliferar en el medio ambiente, así como su potencial para sobrevivir en el medio ambiente a una velocidad directamente proporcional a los patógenos de interés. Bacteroides dependen principalmente de la temperatura y la presencia de depredadores, y se ha encontrado que pueden sobrevivir 113 hasta seis días bajo condiciones de reducción de oxígeno (Field y Dick 2004) similar a otros patógenos. Debido a la abundancia de esta bacteria en las heces humanas y de animales, la bacteria ha permitido para el análisis dirigido a los genes huésped presentes en el genoma Bacteroides. Layton et al. (2006) expresa que las bacterias que pertenecen al género Bacteroides se han sugerido como indicador fecal alternativo a E. coli o bacterias coliformes fecales ya que constituyen una porción significativa de la población de bacterias fecales, tienen poco potencial para el crecimiento en el medio ambiente, y tienen alto grado de especificidad de huésped que probablemente refleja las diferencias en los sistemas digestivos de origen animal de acogida. Numerosos métodos han sido diseñados para secuencias diana específicas de diagnóstico de Bacteroides dentro del gen 16S ARNr (que es vital para la síntesis de proteínas y por lo tanto presente en todas las bacterias) presentes en las heces de diferentes animales. Katherine Field y colegas, en particular, han realizado una amplia investigación sobre el uso de Bacteroides 16S ARNr PCR ensayos basados en SFM. Field and Bernard (2004) desarrollaron 16S ARNr genes responsables de Bacteroides para detectar la contaminación fecal y distinguir entre recursos humanos y rumiantes (por ejemplo, ganado bovino, caprino, ovino, venados, y otros) por PCR. El desarrollo de métodos SFM específicos a los marcadores moleculares dentro del gen diana permitirá diferenciar entre Bacteroides asociados con humanos y rumiantes, por lo tanto, ayudando con la identificación de la posible fuente de contaminación. Como Scott et al. (2002) menciona, 114 este enfoque ofrece la ventaja de evitar la necesidad de una etapa de cultivo, lo que permite una identificación más rápida del organismo. Mientras que se ha avanzado en la identificación de marcadores genéticos que son útiles para el SFM, pocos son los estudios que han evaluado cómo estos marcadores moleculares utilizados como dianas de SFM varían en el tiempo y en el espacio después de la contaminación fecal de las aguas superficiales (Bower et al. 2005). Hay varios estudios que han utilizado métodos de SFM, en particular análisis de huesped asociado basados en PCR dirigidos a marcadores genéticos de Bacteroides para investigar las fuentes y los niveles de contaminación fecal en aguas recreativas y cuencas hidrográficas. En un estudio realizado por Gourmelon et al. (2007), tres estuarios fueron comparados por PCR utilizando marcadores específicos de Bacteroides humano en combinación con diana especifica de humanos y animales. PCR resultó ser un indicador confiable de la contaminación fecal. Bacteroides se observó en el 95% de las muestras fecales en todas las plantas de tratamiento de aguas residuales y el estiércol de cerdo líquido. Otro estudio dirigido a Bacteroides, Shanks et al. (2010), compararon siete análisis de PCR y qPCR dirigidos a genes de Bacteroides que fueron relacionados con heces rumiantes o bovinas. PCR demostró niveles de prevalencia que variaron de 54% a 85% de todos los extractos de ADN de 247 muestras fecales bovinas individuales y especificidad (que preciso el análisis de PCR detectó muestras fecales bovinas conocidos) varió de 76% a 100% para los análisis estudiados. Un estudio previo por Griffith, Weisberg y McGee (2003), utilizando muestras ciegas demostró que métodos de fuente específicos para Bacteroides, SFM identificó fuentes fecales correctamente cuando las fuentes compuestas con tan 115 poco como 1% del total de la contaminación fecal en las muestras. Aunque existe una gran cantidad de conocimiento en la literatura, todavía hay muchos estudios de SFM en curso dirigidas al gen 16S ARNr de Bacteroides para mejorar la detección y caracterización de cuencas. Aunque SFM de Bacteroides ha sido útil para la caracterización de la contaminación, todavía es una ciencia emergente e investigaciones se están realizando actualmente para validar métodos publicados y comprender mejor la eficacia de las tecnologías disponibles. Extensas pruebas de campo está en curso para determinar la eficacia de análisis publicados y la distribución geográfica de presuntos marcadores específicos de humanos (McLain et al. 2009). Varios estudios recientes han revelado las pruebas de heces de los animales domésticos, ganado, aves y mamíferos silvestres, así como peces y otras especies acuáticas para la amplificación cruzada con análisis humanos y los marcadores moleculares que previamente se pensaba ser específico ha humano (McLain et al. 2009). Por lo tanto, es fundamental que los métodos basados en SFM sean evaluados cuenca por cuenca para finalmente comprender la utilidad de los métodos para la caracterización de la contaminación exacta. SFM Apoya Caracterización de Cuencas e identificación de fuentes en Arizona. El Departamento de Calidad Ambiental de Arizona (ADEQ) fue establecido por la Legislatura Estatal de Arizona en 1986. El objetivo de ADEQ es proteger y mejorar la salud pública, el bienestar y el medio ambiente en Arizona. Hoy en día, ADEQ administra una variedad de programas para crear conciencia de los problemas del agua 116 que actualmente enfrenta Arizona. Además, ADEQ utiliza programas para mejorar el bienestar y la salud de los habitantes de Arizona a través de asegurar que los recursos de agua cumplan con los estándares regulatorios. Este agencia regulatoria mantiene una lista nombrada 303d de los lugares que no cumplen con los estándares regulatorios de agua limpia en todo el estado de Arizona (ADEQ 2010). Sección 303d requiere cargas totales máximas diarias (TMDL) se establezcan para las aguas afectadas por los estados, territorios y tribus autorizadas con la supervisión de la EPA de E. U. (Simpson, Santo Domingo y Reasoner 2002). Un TMDL se define como la cantidad máxima de un contaminante en el cuerpo de agua que puede recibir y aún cumplir con los límites regulados para ese contaminante. A partir de 2008, ADEQ listó 17 cuencas deterioradas en todo el estado de Arizona en la lista 303d debido a la presencia de E. coli en niveles más altos que las criterios establecidos (US EPA 2008). Se anticipa que el número de cuencas deterioradas se incrementará en el año 2013. ADEQ trabaja diligentemente para traer esas cuencas deterioradas a estándar. Recientemente, un método utilizado por la sección de ADEQ encargada de la ejecución TMDL ha involucrado un seguimiento intensivo de calidad del agua por voluntarios capacitados, junto con el uso de métodos innovadores de SFM. Este enfoque tiene como objetivo entender y describir las líneas de acción necesarias para restablecer aguas afectadas y para proteger y mantener las aguas no afectadas en todo el Estado de Arizona. Como parte de este enfoque, los grupos interesados en cuencas locales y la agencia estatal han comenzado a colaborar con las instituciones de investigación, la Universidad de Arizona y la Universidad del Norte de Arizona, para utilizar técnicas de SFM para 117 identificar las fuentes de bacterias fecales y la contaminación microbiana dentro de las cuencas hidrográficas deterioradas. El objetivo de este enfoque es identificar y caracterizar apropiadamente las fuentes de contaminantes que causan el deterioro. En las cuencas donde las fuentes no se conocen ni se entienden, las técnicas de SFM pueden ayudar a identificar y eliminar las fuentes potenciales de bacterias fecales. Hasta la fecha, más de 181 muestras de agua de superficie han sido colectadas por voluntarios entrenados por profesores, personal y estudiantes de la Universidad de Arizona Extensión Cooperativa en tres cuencas actualmente calificadas como deterioradas por bacteria de E. coli por ADEQ (Figuras 6, 7 and 8). Investigaciones en la Universidad de Arizona está en marcha para evaluar los métodos MST actualmente publicados que produzcan datos fiables a partir de estas cuencas para el desarrollo e implementación del TMDL. Los métodos de SFM fueron elegidos específicamente dentro de estas regiones seleccionadas en el estado debido a la(s) fuente(s) de lo previsto de las bacterias no visiblemente evidentes en estas cuencas. Más específicamente, los métodos fueron seleccionados para diferenciar entre las fuentes humanas y bovinas de Bacteroides presente en muestras de agua recogidas por voluntarios. Cada una de las diferentes cuencas hidrográficas incluidas en este estudio tienen una diferente caracterización del uso del suelo (urbano o rural) y las entradas potenciales dentro de su área. El uso de los métodos mencionados anteriormente para identificar las fuentes de contaminación fecal facultará ADEQ para trabajar con las partes interesadas dentro de la comunidad para supervisar y solucionar lugares que contribuyen a la contaminación con la intención de remover aguas afectadas de la lista en Arizona. 118 Referencias Arizona Department of Environmental Quality. 2010 Water Quality [Online] http://www.azdeq.gov/environ/water/index.html. Bower, P. A., Scopel, C. O., Jensen, E. T., Depas, M. M., and McLellan, S. L. 2005. Detection of Genetic Markers of Fecal Indicator Bacteria in Lake Michigan and Determination of Their Relationship to Escherichia coli Densities Using Standard Microbiological Methods. Appl. Environ. Microbiol. 71: 8305-8313. Buchan, A., Alber, M., and Hodson, R. E. 2001. Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenetic spacer region. FEMS Microbiol. Ecol. 35: 313-321. Field, K. G., and Bernhard, A. E. 2000. Identification of Nonpoint Sources of Fecal Pollution in Coastal Waters by Using Host-Specific 16S Ribosomal DNA Genetic Markers from Fecal Anaerobes. Appl. Environ. Microbiol. 66: 1587-1594. Field, K. G., Bernhard, A. E., and Brodeur, T. J. 2003. Molecular Approaches To Microbiological Monitoring: Fecal Source Detection. Environ. Monitoring and Assessment 81: 313-326. Field, K. G., and Dick, L. K. 2004. Rapid Estimation of Numbers of Fecal Bacteroidetes by use of a Quantitative PCR Assay for 16S rRNA Genes. Appl. Environ. Microbiol. 70: 5695-5697. Fong, T. T., Griffin, D. W., and Lipp, E. K. 2005. Molecular Assays for Targeting Human and Bovine Enteric Viruses in Coastal Waters and their Application for Library-Independent Source Tracking. Appl. Environ. Microbiol. 71: 2070-2078. Gourmelon, M., Caprais, M. P., Segura, R., Le Mennec, C., Lozach, S., Piriou, J. Y., and Rince, A. 2007. Evaluation of Two Library-Independent Microbial Source Tracking Methods To Identify Sources of Fecal Contamination in French Estuaries. Appl. Environ. Microbiol. 73: 4857-4866. Griffith, J. F., Weisberg, S. B., and McGee, C. D. 2003. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J. Wat. Health 1: 141-151. Jenkins, M. W., Sangam, T., Lorente, M., Gichaba, C. M., and Wuertz, S. 2009. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assay. Water Research 43: 4956-4966. 119 Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. 2006. Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water. Appl. Environ. Microbiol. 72: 4214-4224. McLain, J. E., Ryu, H., Kabiri-Badr, L., Rock, C. M., and Abbaszadegan, M. 2009. Lack of specificity for PCR assays targeting human Bacteroides 16S rRNA gene: crossamplification with fish feces. FEMS Microbiology Letters 299: 38-43. Okabe, S., Okayama N., Savichtcheva O., and Ito, T. 2007. Quantification of hostspecific Bacteroides–Prevotella 16SrRNA genetic markers for assessment of fecal pollution in freshwater. Appl. Microbiol. Biotechnol. 74: 890-901. Parveen, S., Hodge, N. C., Stall, R. E., Farrah, S. R., and Tamplin, M. L. 2001 Phenotypic and Genotypic Characterization of Human and Nonhuman Escherichia coli. Water Res. 35: 379-386. Santo Domingo, J. W., Bambic, D. G., Edge, T. A., and Wuertz, S. 2007. Quo Vadis Source Tracking? Towards a Strategic Framework for Environmental Monitoring of Fecal Pollution. Water Res. 41: 3539-3552. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J. 2002. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 68: 5796-5803. Shanks, O. C., White, K., Kelty, C. A., Hayes, S., Sivaganesan, M., Jenkins, M., Varma, M., and Haugland, R. A. 2010. Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution. Appl. Environ. Microbiol. 76: 1359-1366. Simpson, J. M., Santo Domingo, J. W., and Reasoner, D. J. 2002. Microbial Source Tracking: State of the Science. Environ. Sci. Technol. 36: 5279-5288. Smith, C. J., Rocha, E. R., and Paster, B. J. 2006. The Medically Important Bacteroides spp. in Health and Disease. Prokaryotes 7: 381-427. Soller, J. A, Schoen, M. E., Bartrand, T., Ravenscroft, J. E., and Ashbolt, N. J. 2010. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research 30: 1-18. Stoeckel, D. M., Mathes, M. V., Hyer, K. E., Hagedorn, C., Kator, H., Lukasik, J., O’Brien, T. L., Fenger, T. W., Samadpour, M., Strickler, K. M., and Wiggins, B. A. 2004. Comparison of Seven Protocols To Identify Fecal Contamination Sources Using Escherichia coli. Environ. Sci. Technol. 38: 6109-6117. 120 US Environmental Protection Agency. 2005. Microbial source tracking guide. Document EPA/600/R-05/064. U. S. Environmental Protection Agency, Washington, DC. US Environmental Protection Agency. 2008. Arizona 2008 Water Quality Assessment Report [Online] http://iaspub.epa.gov/waters10/attains_index.control?p_area=AZ#wqs US Environmental Protection Agency. 2009. Water Quality Standards [Online] http://www.epa.gov/waterscience/standards/wqslibrary/az/az_9_wqs.pdf US Environmental Protection Agency, Region 10. 2011. Using Microbial Source Tracking to Support TMDL Development and Implementation [Online] http://www.epa.gov/region10/pdf/tmdl/mst_for_tmdls_guide_04_22_11.pdf 121 Tablas Tabla 1. Tipos comunes de métodos de seguimiento de fuente microbiana (SFM). Ref: US EPA 2011 Biblioteca-dependiente Biblioteca-independiente Cultivo-dependiente Bioquímico Resistencia a antibióticos Utilización de carbono Molecular Rep-PCR PFGE Ribo tipo Cultivo-independiente Bioquímico o Molecular Bacteriófago Cultivo bacteriano Molecular PCR de huésped bacteriano especificó PCR de huésped viral especificó PCR cuantitativo de huésped especificó 122 Tabla 2. Términos de uso general (ref. US EPA 2011) Términos de uso general: Métodos Bioquímicos (fenotípicas) se refieren a la capacidad de observar físicamente una característica de las bacterias aisladas que podrían haber sido adquiridos de la exposición a diferentes especies huésped o el medio ambiente. Ejemplos pueden ser la resistencia a ciertos antibióticos o la utilización de carbono como fuente de nutrientes. Métodos de cultivo que dependen en bacterias de las muestras de agua que se cultivan en un laboratorio. Unidades formadoras de colonias (UFC) se refiere a la unidad de medida o de la concentración de bacterias cultivadas. Métodos de cultivo independientes aíslan e identifican el ADN directamente a partir de una muestra de agua sin primero tener que cultivar las bacterias de la muestra. Fuente fecal se refiere a un huésped humano o animal donde un microbio origina en los residuos fecales de ese huésped. Dependiendo de la especificidad de un método de SFM, una fuente fecal podría referirse a un grupo general de huéspedes (por ejemplo, todos los seres humanos, todos los animales, o un grupo de animales, tales como los rumiantes), o un huésped específico animal (por ejemplo, ganado, venados, perros, etc.) Métodos de biblioteca dependientes identifican las fuentes de material fecal de las muestras de agua basado en datos de huellas dactilares fenotípicas o genotípicas de las cepas de bacterias de las fuentes fecales conocidas. Métodos de biblioteca independientes identifican las fuentes fecales sobre las características conocidas de huéspedes específicos de las bacterias sin necesidad de una biblioteca. Seguimiento de fuente microbiana (SFM) se refiere a un grupo de métodos destinados a discriminar entre fuentes humanas y no humanas de la contaminación fecal. Algunos métodos están diseñados para diferenciar entre contaminación fecal originarios de especies de animales individuales. Cepa microbiana es una variante genética o subtipo de un microorganismo (por ejemplo, las especies bacterianas). Métodos moleculares (genotípica) utilizan las variaciones en la composición genética o el ADN de cada organismo individual o bacterias. Esto se conoce como "huellas de ADN". 123 Imágenes / Figuras Figura 1. Transmisión de agentes patógenos a través del agua. 124 Bacterias coliformes totales Bacterias coliformes fecales E. coli Patógeno Figura 2. Relación entre los indicadores y patógenos 125 Figura 3. Visualización de una muestra de agua contaminada con material fecal. Células azules fluorescentes indican la presencia de E. coli en el agua. 126 Figura 4. Estudiante de doctorado, Berenise Rivera, demuestra una técnica estéril, mientras analiza muestras de agua para las bacterias fecales. 127 Figura 5. Extracción/Concentración de ADN. 128 Figura 6. Voluntarios del equipo de monitoreo de calidad del agua reciben entrenamiento organizado por personal de Extensión Cooperativa de la UA. 129 Figura 7. Voluntario de monitoreo de calidad del agua en el Río Santa Cruz, Arizona. 130 Figura 8. Muestras de agua ambientales colectadas en el campo. 131 APPENDIX E WATER QUALITY, E. COLI AND YOUR HEALTH (Published in College of Agriculture and Life Sciences Cooperative Extension) Berenise Rivera, MPH, PhD Student, Soil/Water and Environmental Science Dr. Channah Rock, Extension Water Quality Specialist/Assistant Professor, Soil/Water and Environmental Science What is Water Quality? Water quality refers to the chemical, physical or biological characteristics of water. Water quality is a measure of the condition of water relative to its’ impact on one or more aquatic species like fish and frogs or on human uses such as drinking and swimming. The most common standards used to assess water quality relate to health of ecosystems, safety of human contact and drinking water. Water quality protection programs in Arizona are based on federal and state law and are administered by the U.S. Environmental Protection Agency (EPA) or Arizona Department of Environmental Quality (ADEQ) to keep ecosystems and people safe. What is E. coli? Escherichia coli (E. coli) are gram-negative bacteria and are a type of fecal coliform bacteria commonly found in the intestines of animals and humans (Figure 1). E. coli are so small they can’t be seen without a microscope; however, their growth can be seen as 132 colonies on agar media (like JELL-O) under special conditions (Ingerson and Reid, 2011). Most E. coli do not cause illness but if a person becomes sick from E. coli, the primary site of infection is the gastrointestinal tract and symptoms can include nausea, vomiting, diarrhea, and fever. This bacterium lives and grows naturally in the gastrointestinal tract of humans and animals but if it gets in the wrong place in the body, for example, the kidneys or blood, it can cause illness. According to Ingerson and Reid (2011), the infection may spread within the body (to blood, liver, and nervous system). These microorganisms are shed in fecal material, or feces, hence their spread is termed the “fecal-oral” route of transmission. Contaminated food and water are the most common ways to be exposed to E. coli. There are specific types (also called “strains”) of E. coli that can cause disease and there are also harmless types. Some of the harmful types of E. coli are classified into the following groups: Enterotoxigenic (ETEC), Enteropathogenic (EPEC), Enterohemorragic (EHEC) and Enteroinvasive (EIEC). ETEC, EPEC and EIEC are all generally transmitted through contaminated food and water (Gerba et al., 2009 and Vieira et al., 2007). Table 1 summarizes the harmful types of E. coli, mode of transmission, and disease outcome. A more well-known type or strain of E. coli is O157:H7 which is found under the EHEC group and is commonly the cause of contaminated foods such as spinach and meat but has also been implicated in outbreaks where water was the source of contamination. 133 E. coli in Our Water The presence of E. coli in water is a strong indication of recent sewage or animal waste contamination. It is important to note that E. coli and waste can get in our water in many different ways. For example, during rainfall and snow melt, E. coli may be washed into creeks, rivers, streams, lakes, or groundwater (Griffith et al., 2003, Roslev and Bukh, 2011) from the land surface. Other ways consist of natural wildlife, failing septic systems, recreational activities and local land use practices (for example, manure used as fertilizers, livestock, concentrated feeding operations). Human and animal sources of fecal pollution represent a serious health risks because of the high likelihood of the existence of pathogens also in the fecal waste. A pathogen is a microorganism that can cause disease and make someone sick. Cattle, swine, and chickens also carry pathogens that can be transmitted from animals to humans causing disease. Therefore introduction of any animal or human waste in water is of high concern. Numerous studies have been conducted around the world to assess the connection between water quality and serious health effects to people who come into contact with that water through recreation (swimming, wading, fishing, etc.). Although not all E. coli bacteria are typically pathogenic, extensive studies have demonstrated that E. coli concentrations are the best predictor of swimming-associated gastrointestinal illness (diarrhea). In addition to gastrointestinal illness (GI), illnesses such as eye infections, skin irritations, ear, nose, throat infections, and respiratory illness are also common in people who have come into contact with water contaminated with feces. Some studies 134 have pointed out that the rates of some serious health effects, such as those mentioned above, are higher in swimmers when compared to non-swimmers (Soller et al., 2010). The presence of E. coli may be indicative of contamination with other bacteria, viruses or protozoa that can make you sick. Salmonella is a bacterium commonly implicated in contaminated food and water. Salmonella can cause diseases such as typhoid fever from consumption of contaminated water and Salmonellosis from eating contaminated beef and poultry. A person consuming contaminated food or water can experience nausea, vomiting, abdominal cramps, diarrhea, and fever. Another common water-borne (spends all or part of its life in water) pathogen, Cryptosporidium, is a protozoan parasite affecting the gastrointestinal tract of humans and animals and it is shed in the feces in the form of an oocyst. This oocyst consists of a hard outer shell that protects it from degradation in the environment. Cryptosporidium is highly resistant to chlorine commonly used in drinking water treatment, and has been implicated in several waterborne disease outbreaks in the past. One such outbreak took place in Milwaukee on April 1993, which infected over 400,000 people and killed more than 100 (Gerba, 2009). Heavy rains flooded agricultural plains in Wisconsin and produced substantial runoff into a river that provided the City of Milwaukee with drinking water. The drinking water treatment facility was not able to adequately treat or “kill” the high levels of Cryptosporidium in the water due to their highly resistant outer shell. The Milwaukee outbreak is an example of the dangers protozoa can pose in drinking water. To date, the Milwaukee outbreak is the largest outbreak to be documented in the United States. As demonstrated by the number of people infected in the Milwaukee outbreak, consequences 135 of consuming fecally contaminated water may be severe in people with weakened immune systems (e.g., infants and the elderly) and sometimes fatal in people with severely compromised immune systems. Because contaminated water poses such a large threat to human health, water managers and regulatory agencies have designed tests to tell us our water is safe. We commonly use E. coli to indicate that fecal contamination is present in water. Although, we do not want to find E. coli in our water, these bacteria can be easily tested and quantified by simple methods. Detection of these bacteria in water means that fecal contamination has occurred and suggests that enteric pathogens, like the ones mentioned above, may be present. This also means that humans and animals should not come into contact with the contaminated water until the presence of E. coli is no longer detected, and the water is considered safe. How do we make sure our water is safe? Numerous government and state agencies as well as local watershed groups test water quality to ensure it is safe or if there are potential problems with contamination. Water quality testing and data reporting in the past were based on bacterial groups called total and fecal coliforms. Coliforms can be found in the aquatic environment, in soil, and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals. While coliforms themselves are not normally causes of serious illness, they are easy to culture and their presence is used to indicate that other pathogenic organisms of fecal origin may be present. Today, water quality testing has evolved and is now based on 136 the concentration of E. coli. E. coli is one of the types of bacteria within the fecal coliform group and is a predictor of fecal contamination. Water that is consumed for drinking water purposes is tested for the concentration, or level, of E. coli that is deemed safe for human consumption. Similarly, wastewater that has been treated and then recycled for irrigation purposes and/or discharged to surface waters must also meet certain levels of E. coli to be considered safe. Rivers that are used for recreation, such as fishing and swimming, are required to meet certain levels of E. coli or they can be deemed “impaired” (Rivera and Rock, 2011). Table 2 outlines the various acceptable levels/concentrations of E. coli of the different water uses mentioned above. The concentrations of E. coli used in regulation are based on assessment of the volume of water a person consumes during different practices and the likelihood the person would become sick after coming into contact with the contaminated water. In circumstances where the contact or ingestion of the water is high (swimming) the concentration of the E. coli that is deemed acceptable is lower. In situations where the contact with the water is low (irrigation) the levels of E. coli considered acceptable may be higher because there is a lower risk of a person becoming sick. E. coli is currently the most reliable indicator of fecal bacterial contamination of surface waters in the U.S. according to water quality standards set by the EPA. EPA bacterial water quality standards are based on a level of E. coli in water above which the health risk from waterborne illness is unacceptably high. Due to the many associated health risks the presence of pathogens and other microorganisms can pose, regulators such as the US EPA and ADEQ have implemented ways to reduce contact with impaired 137 waters by defining various water use categories. Two of these categories are partial-body contact (PBC) and full-body contact (FBC). According to the US EPA, partial-body contact refers to the human body coming in contact with surface water used for recreational activities, but not to the point of full-body submergence (2009). Levels of E. coli cannot exceed 575 colony forming units (CFU) per 100 mL of water for partial body contact (US EPA, 2009). The term CFU refers to the number of living bacterial cells in a water sample. Therefore, this measure is used to tell us the degree of contamination in samples of water or the degree of the infection in humans and animals. For full-body contact, E. coli levels cannot exceed 235 CFU per 100 mL of water. Full-body contact refers to the human body being completely underwater in activities such as swimming or other recreational activity (US EPA, 2009). What can you do in your community to protect water quality? Essential to human beings and ecosystems, water is closely linked with human life. Numerous activities that occur within your community can ultimately impact surface water quality. Here are some ways you can help keep rivers, lakes and streams safe for both people and ecosystems: Learn about your local water body or watershed Identify ways you can help prevent polluted runoff from your home, ranch, or farm Pick up pet waste in and around your neighborhood Keep domestic animals and/or livestock out of waterways (or reduce their exposure) Properly maintain your septic system and have it inspected when appropriate 138 Join a local watershed group or volunteer organization active in environmental issues in your community Volunteer during clean up events targeting pollution near surface waters Do not throw trash into rivers, lakes, and streams (while the trash may not contain fecal matter or waste, it may attract wild or domestic animals which may introduce fecal contamination near water bodies and causing pollution) When camping or hiking, properly dispose of waste and trash to reduce the attraction to animals Water is a very precious resource; by doing your part to protect our water sources we can ensure benefits to future generations and to the safety of its users. 139 References Arizona Department of Environmental Quality. 2010 Water Quality. [Online] http://www.azdeq.gov/environ/water/index.html. Francy, D. S., Myers, D. N., and Metzker K. D. 1993 Escherichia coli and fecal coliform bacteria as indicators of recreational water quality. U.S. Geological Survey. Water Resources Investigations Report 93-4083. Columbus, Ohio. Gerba, C. “Indicator Microorganisms.” Environmental Microbiology. 2nd Ed. Academic Press, San Diego, CA, 2009. 485-499. Gerba, C. “Environmentally Transmitted Pathogens.” Environmental Microbiology. 2nd Ed. Academic Press, San Diego, CA, 2009. 445-484. Griffith, J. F., Weisberg, S. B., and McGee C. D. 2003 Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J. Wat. Health 1: 141-151. Hathaway, J. M. and Hunt, W. F. 2008 URBAN Waterways: Removal of Pathogens in Stormwater. North Carolina Cooperative Extension Service, AGW-588-16W. Ingerson, M. M. and Reid, A. 2011 E. coli: Good, Bad, & Deadly. American Academy of Microbiology. pg. 1-14. Rivera, B. and Rock, C. 2011 Microbial Source Tracking: Watershed Characterization and Source Identification. Arizona Cooperative Extension, az1547. Roslev, P., and Bukh, A. S. 2011 State of the Art Molecular Markers for Fecal Pollution Source Tracking in Water. Appl Microbiol Biotechnol 89: 1341-1355. Soller, J.A, Schoen, M. E., Bartrand, T., Ravenscroft, J.E., and Ashbolt, N. J. 2010 Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research 30: 1-18. Vieira, N., Bates, S. J., Solberg, O. W., Ponce, K., Howsmon, R., Cevallos, W., Trueba, G., Riley, L. and Eisenberg, J. N. S. 2007 High Prevalence of Enteroinvasive Escherichia Coli Isolated in a Remote Region of Northern Coastal Ecuador. Am J Trop Med Hyg 7: 528-533. U. S. Environmental Protection Agency. 2008 Arizona 2008 Water Quality Assessment Report. [Online] http://iaspub.epa.gov/waters10/attains_index.control?p_area=AZ#wqs. 140 U.S. Environmental Protection Agency. 2009 Water Quality Standards [Online] http://www.epa.gov/waterscience/standards/wqslibrary/az/az9wqs.pdf U. S. Senate. 2002 Federal Water Pollution Control Act. [Online] http://www.epw.senate.gov/water.pdf. 141 Figures and Tables Figure 1. E. coli - Gram-negative, facultatively anaerobic, rod prokaryote; with multiple flagella and fimbriae. E. coli can cause urinary tract infections, traveler's diarrhea and nosocomial infections. (Dennis Kunkel Microscopy, Inc./Visuals Unlimited, Inc.) 142 Table 1. Harmful strains of E. coli Strains of E. coli Modes of Transmission Disease ETEC causes diarrhea without fever. It is common in infants and is often the cause of travelers’ diarrhea EPEC causes watery, sometimes bloody diarrhea. It Enteropathogenic Food or water ingestion, direct and is a common cause of indirect human contact (EPEC) infantile diarrhea in underdeveloped countries. EHEC strains cause bloody diarrhea and can sometimes damage the kidneys and progress to the potentially Enterohemorragic Food/ingestion, direct or indirect fatal hemolytic uremic human contact syndrome (HUS). EHEC has (EHEC) caused many large food-borne outbreaks worldwide; O157:H7 is the best known strain. EIEC causes watery, Food and water ingestion Enteroinvasive dysentery like diarrhea. Fever (EIEC) is another common symptom. Enterotoxigenic (ETEC) Food or water ingestion 143 Table 2. Level of E. coli permitted for Different Types of Water (ADEQ, 2010 and EPA, 2009) Purpose Drinking Water Surface Water Full-Body Contact (swimming) Surface Water Partial-Body Contact (Fishing, boating, etc…) Wastewater (irrigation or discharge) Level of E. coli Zero 235 cfu/100 mL 575 cfu/100 mL < 2.2cfu/100 mL < 1.0 cfu/100 mL 144 APPENDIX F LA CALIDAD DEL AGUA, E. COLI Y SU SALUD (Published in College of Agriculture and Life Sciences Cooperative Extension) Berenise Rivera, MPH, Candidata a Doctorado, Suelo / Agua y Ciencias Ambientales Dra. Channah Rock, Especialista en Calidad del Agua de extensión/ Profesor, Suelo / Agua y Ciencias Ambientales ¿Qué es La Calidad del Agua? La calidad del agua se refiere a las características químicas, físicas o biológicas del agua. La calidad del agua es una medida de la condición del agua en relación con su impacto en una o más especies acuáticas como peces y ranas o en usos humanos, ya sea para consumo o recreativo. Los estándares más comunes que se utilizan para evaluar la calidad del agua se relacionan con la salud de los ecosistemas, la seguridad del contacto humano y el agua potable. Los programas de protección de la calidad del agua en Arizona se basan en la ley federal y estatal, y son administrados por la Agencia de Protección Ambiental (EPA) de E. U. o el Departamento de Calidad Ambiental de Arizona (ADEQ) para mantener los ecosistemas y la seguridad del público. Qué es E. coli? Escherichia coli (E. coli) son bacterias gram-negativo y son un tipo de bacterias coliformes fecales que se encuentran comúnmente en los intestinos de los animales y los seres humanos (Figura 1). E. coli son tan pequeños que no se pueden ver sin un 145 microscopio, sin embargo, su crecimiento puede verse como colonias en medios de agar (como gelatina) en condiciones especiales (Ingerson y Reid, 2011). La mayoría de las bacterias E. coli no causan enfermedad, pero si una persona se enferma de E. coli, el sitio primario de infección es el tracto gastrointestinal y los síntomas pueden incluir náusea, vómito, diarrea y fiebre. Esta bacteria vive y crece de forma natural en el tracto gastrointestinal de los seres humanos y los animales, pero si entra en el lugar equivocado en el cuerpo, por ejemplo, los riñones o la sangre, puede causar enfermedad. Según Ingerson y Reid (2011), la infección puede diseminarse en el cuerpo (a la sangre, el hígado y el sistema nervioso). Estos microorganismos se eliminan en el material fecal, o las heces, y la ruta de transmisión es "fecal-oral". Los alimentos y agua contaminada son las formas más comunes de ser expuestos a E. coli. Hay tipos específicos (también llamadas "cepas") de E. coli que pueden causar enfermedades y también hay tipos que no causan ninguna enfermedad. Algunos de los tipos dañinos de E. coli se clasifican en los siguientes grupos: Enterotoxigénico (ETEC), Enteropatógenos (EPEC), Enterohemorrágico (EHEC) y Enteroinvasivo (EIEC). ETEC, EPEC y EIEC son transmitidos generalmente a través de alimentos y agua contaminada (Gerba et al, 2009 y Vieira et al, 2007). La Tabla 1 resume los tipos dañinos de E. coli, el modo de transmisión y evolución de la enfermedad. Un tipo mejor conocido de E. coli es O157: H7 que se encuentra bajo el grupo EHEC y es comúnmente la causa de alimentos contaminados tales como espinacas y carne, pero también se ha implicado en epidemias donde el agua era la fuente de la contaminación. 146 E. coli en el Agua La presencia de E. coli en el agua es una fuerte indicación de una reciente contaminación de aguas residuales o contaminación de residuos de animales. Es importante tener en cuenta que E. coli y los residuos de animales/humanos pueden entrar en nuestra agua de muchas maneras diferentes. Por ejemplo, durante la lluvia y derretimiento de la nieve, E. coli se puede lavar en los ríos, arroyos, lagos o aguas subterráneas (Griffith et al 2003, Roslev y Bukh, 2011) de la superficie de la tierra. Otras formas son la fauna silvestre, fosas sépticas defectuosas, actividades recreativas y prácticas locales de uso del suelo (por ejemplo, estiércol utilizado como fertilizante y ganado). Las fuentes de contaminación fecales de humanos y animales representan un grave riesgo para la salud debido a la alta probabilidad de la existencia de agentes patógenos en los residuos fecales. Un patógeno es un microorganismo que puede causar enfermedades y causar enfermedades en las personas. El ganado vacuno, cerdos y gallinas también acarrean patógenos que pueden causar enfermedades y pueden transmitirse de animales a humanos. Por lo tanto, la introducción de heces de animales o humanos en el agua es de mucha preocupación. Numerosos estudios se han realizado en todo el mundo para evaluar la relación entre la calidad del agua utilizada para actividades recreacionales; y los efectos adversos en la salud de las personas que tienen contacto con el agua a través de actividades recreativas (natación, pesca, etc.). Aunque no todas las bacterias E. coli son patogénicas, los estudios llevados a cabo han demostrado que las concentraciones de E. coli son el mejor indicador de enfermedades gastrointestinales (diarrea) asociadas a la natación. 147 Además de las enfermedades gastrointestinales (GI), infecciones de los ojos, irritaciones de la piel, oído, nariz, infecciones de garganta, y enfermedades de las vías respiratorias, son comunes en las personas que han estado en contacto con agua contaminada con heces fecales. Algunos estudios han señalado que las tasas de algunos efectos adversos a la salud, tales como los mencionados anteriormente, son más altos en los nadadores, en comparación con los no nadadores (Soller et al., 2010). La presencia de E. coli puede ser indicativo de la contaminación con otras bacterias, virus o protozoos que pueden causar enfermedades. Salmonella es una bacteria comúnmente implicada en alimentos y agua contaminados. Salmonella puede causar enfermedades como la fiebre tifoidea por el consumo de agua contaminada y Salmonelosis por comer carne de res y pollo contaminado. Una persona que consume alimentos o agua contaminada puede experimentar náuseas, vómitos, cólicos abdominales, diarrea y fiebre. Otro patógeno común transmitido por el agua (pasa toda o la mayor parte de su vida en el agua), Cryptosporidium, un parásito protozoario que afecta el tracto gastrointestinal de humanos y animales, y se elimina en las heces en forma de ooquistes. Estos ooquistes consisten de una cáscara exterior dura que lo protege de la degradación en el medio ambiente. Cryptosporidium es muy resistente al cloro comúnmente utilizado para el tratamiento de agua potable, y se ha implicado en varias epidemias de enfermedades transmitidas por el agua en el pasado. Uno de estas epidemias tuvo lugar en Milwaukee en Abril de 1993, que infectó a más de 400,000 personas y mató a más de 100 (Gerba, 2009). Las fuertes lluvias inundaron llanos agrícolas en Wisconsin y produjeron escurrimiento al río que proporciona agua potable a la ciudad de 148 Milwaukee. La planta de tratamiento de agua potable no fue capaz de tratar adecuadamente para controlar los altos niveles de Cryptosporidium en el agua debido a su resistente capa exterior. La epidemia de Milwaukee es un ejemplo de los peligros que pueden representar los protozoarios en el agua potable. Hasta la fecha, la epidemia de Milwaukee es la epidemia más grande que ha sido documentada en los Estados Unidos. Como lo demostró el número de personas infectadas en la epidemia de Milwaukee, las consecuencias del consumo de agua contaminada con material fecal pueden ser graves en personas con sistemas inmunológicos debilitados (por ejemplo, niños y ancianos) y algunas veces fatal en personas con sistemas inmunológicos gravemente comprometidos. Ya que el agua contaminada posa una gran amenaza para la salud humana, los administradores del agua y las agencias reguladoras han diseñado pruebas para informar al público si nuestra agua es segura. Comúnmente utilizamos E. coli para indicar que la contaminación fecal se encuentra presente en el agua. A pesar de que no queremos encontrar E. coli en el agua, estas bacterias pueden ser fácilmente probados y cuantificados por métodos simples. La detección de estas bacterias en el agua significa que contaminación fecal ha ocurrido y sugiere que los patógenos entéricos, como los mencionados anteriormente, pueden estar presentes. Esto también significa que los humanos y los animales no deben entrar en contacto con el agua contaminada hasta que la presencia de E. coli ya no sea detectada, y el agua se considera segura. 149 La presencia de E. coli puede ser indicativo de la contaminación con otras bacterias, virus o protozoos que pueden causar enfermedades. Salmonella es una bacteria comúnmente implicada en alimentos y agua contaminados. Salmonella puede causar enfermedades como la fiebre tifoidea por el consumo de agua contaminada y Salmonelosis por comer carne de res y pollo contaminado. Una persona que consume alimentos o agua contaminada puede experimentar náuseas, vómitos, cólicos abdominales, diarrea y fiebre. Otro patógeno común transmitido por el agua (pasa toda o la mayor parte de su vida en el agua), Cryptosporidium, un parásito protozoario que afecta el tracto gastrointestinal de humanos y animales, y se elimina en las heces en forma de ooquistes. Estos ooquistes consisten de una cáscara exterior dura que lo protege de la degradación en el medio ambiente. Cryptosporidium es muy resistente al cloro comúnmente utilizado para el tratamiento de agua potable, y se ha implicado en varias epidemias de enfermedades transmitidas por el agua en el pasado. Uno de estas epidemias tuvo lugar en Milwaukee en Abril de 1993, que infectó a más de 400,000 personas y mató a más de 100 (Gerba, 2009). Las fuertes lluvias inundaron llanos agrícolas en Wisconsin y produjeron escurrimiento al río que proporciona agua potable a la ciudad de Milwaukee. La planta de tratamiento de agua potable no fue capaz de tratar adecuadamente para controlar los altos niveles de Cryptosporidium en el agua debido a su resistente capa exterior. La epidemia de Milwaukee es un ejemplo de los peligros que pueden representar los protozoarios en el agua potable. Hasta la fecha, la epidemia de Milwaukee es la epidemia más grande que se sido documentada en los Estados Unidos. Como lo demostró el número de personas infectadas en la epidemia de Milwaukee, las 150 consecuencias del consumo de agua contaminada con material fecal pueden ser graves en personas con sistemas inmunológicos debilitados (por ejemplo, niños y ancianos) y algunas veces fatal en personas con sistemas inmunológicos gravemente comprometidos. Ya que el agua contaminada posa una gran amenaza para la salud humana, los administradores del agua y las agencias reguladoras han diseñado pruebas para informar al público si nuestra agua es segura. Comúnmente utilizamos E. coli para indicar que la contaminación fecal se encuentra presente en el agua. A pesar de que no queremos encontrar E. coli en el agua, estas bacterias pueden ser fácilmente probados y cuantificados por métodos simples. La detección de estas bacterias en el agua significa que contaminación fecal ha ocurrido y sugiere que los patógenos entéricos, como los mencionados anteriormente, pueden estar presentes. Esto también significa que los humanos y los animales no deben entrar en contacto con el agua contaminada hasta que la presencia de E. coli ya no sea detectada, y el agua se considera segura. ¿Cómo nos aseguramos de que nuestra agua es segura? Numerosas agencias gubernamentales y estatales, así como grupos locales de cuencas hacen pruebas de la calidad del agua para confirmar que el agua es segura o si existen posibles problemas de contaminación. En el pasado, las pruebas de calidad del agua y la presentación de datos se basaban en grupos de bacterias llamados coliformes totales y fecales. Las bacterias coliformes se encuentran en el medio ambiente acuático, en el suelo, y en la vegetación. Están universalmente presentes en grandes cantidades en las 151 heces de los animales de sangre caliente. Mientras que los coliformes normalmente no causan enfermedades graves, son fáciles de cultivar y su presencia se utiliza para indicar que otros organismos patógenos de origen fecal pueden estar presentes. Hoy en día, las pruebas de calidad del agua han avanzado significantemente y ahora están basadas en la concentración de E. coli. E. coli es uno de los tipos de bacterias dentro del grupo de coliformes fecales y es un predictor de la contaminación fecal. El agua consumida como agua potable se analiza para determinar la concentración, o el nivel, de E. coli que se considera seguro para el consumo humano. Del mismo modo, las aguas residuales que han sido tratadas y luego recicladas para fines de riego y-/-o descargadas en aguas superficiales también debe cumplir con ciertos niveles de E. coli que se consideran seguros. Los ríos que se utilizan para la recreación, como la pesca y la natación, están obligados a cumplir con ciertos niveles de E. coli o pueden ser considerados "deteriorados" (Rivera y Rock, 2011). La Tabla 2 resume los distintos niveles aceptables / concentraciones de E. coli de los diferentes usos del agua mencionado anteriormente. Las concentraciones de E. coli utilizadas en el reglamento se basan en la evaluación del volumen de agua que consume una persona durante las diferentes prácticas y la probabilidad de que la persona pudiera enfermarse después de entrar en contacto con el agua contaminada. En circunstancias en las que el contacto o la ingestión del agua es alta (natación), la concentración de E. coli que se considera aceptable es menor. En situaciones donde el contacto con el agua es baja (irrigación), los niveles de E. coli que se consideren aceptables pueden ser más altos porque hay menos riesgo de que una persona se enferme. 152 E. coli es actualmente el indicador más confiable de la contaminación bacteriana fecal de las aguas superficiales en los E. U. de acuerdo con los estándares de calidad del agua establecidos por el EPA. Los estándares bacterianos de calidad del agua del EPA se basan en un nivel de E. coli en el agua por encima del cual el riesgo para la salud y enfermedades transmitidas por el agua es inaceptablemente alta. Debido a los muchos riesgos de salud asociados con la presencia de patógenos y otros microorganismos pueden representar, las agencias reguladoras, como la EPA y ADEQ de E. U. han implementado formas de reducir el contacto con aguas deteriorados mediante la definición de las diferentes categorías de uso del agua. Dos de estas categorías son el contacto corporal parcial (CCP) y el contacto corporal completo (CCC). De acuerdo con el EPA de los E. U., el contacto corporal parcial (CCP) significa el uso recreativo de las aguas superficiales que pueden causar que el cuerpo humano entre en contacto directo con el agua, pero por lo general no hasta el punto de inmersión completa (2009). Los niveles de E. coli no puede exceder de 575 unidades formadoras de colonias (UFC) por cada 100 ml de agua para el contacto corporal parcial (CCP) (US EPA, 2009). El término UFC se refiere al número de células bacterianas que viven en una muestra de agua. Por lo tanto, esta medida se utiliza para decirnos el nivel de contaminación en muestras de agua o el riesgo de infección en los seres humanos y los animales. Para el contacto corporal completo, los niveles de E. coli no puede exceder 235 UFC por 100 ml de agua. Contacto corporal completo se refiere al cuerpo humano completamente bajo el agua en actividades como la natación o cualquier otra actividad recreativa acuática (US EPA, 2009). 153 ¿Qué puede hacer en su comunidad para proteger la calidad del agua? El agua es esencial para los seres humanos y los ecosistemas. Numerosas actividades que ocurren dentro de su comunidad, en última instancia pueden afectar la calidad del agua superficial. Aquí hay algunas maneras que usted puede ayudar a mantener los ríos, lagos y arroyos seguros para las personas y los ecosistemas: Aprenda acerca del agua local o cuencas Identifique las formas en que puede ayudar a prevenir la escorrentías contaminadas desde su casa, rancho o granja Recoja los desechos de mascotas en y alrededor de su vecindario Mantenga a los animales domésticos y / o ganado alejado de los cuerpos de agua (o reducir su exposición) Mantenga correctamente su sistema séptico e inspecciónelo cuando sea apropiado Únase a un grupo de cuenca local u organización voluntaria activa en temas ambientales en su comunidad Ser voluntario durante las campañas de limpieza dirigidas a la contaminación cerca de las aguas superficiales No tire basura en los ríos, lagos y arroyos (aunque la basura no contenga material fecal o residuos, pero puede atraer a animales silvestres o domésticos que pueden introducir contaminación fecal a cuerpos de agua cercanos y causar contaminación) Al acampar o ir de excursión, disponga adecuadamente de los desechos y la basura para reducir la atracción de animales El agua es un recurso muy valioso, haciendo su parte para proteger nuestras fuentes de agua, podemos asegurar los beneficios para las generaciones futuras y para la seguridad de sus usuarios. 154 Referencias Arizona Department of Environmental Quality. 2010 Water Quality. [Online] http://www.azdeq.gov/environ/water/index.html. Francy, D. S., Myers, D. N., and Metzker K. D. 1993 Escherichia coli and fecal coliform bacteria as indicators of recreational water quality. U.S. Geological Survey. Water Resources Investigations Report 93-4083. Columbus, Ohio. Gerba, C. “Indicator Microorganisms.” Environmental Microbiology. 2nd Ed. Academic Press, San Diego, CA, 2009. 485-499. Gerba, C. “Environmentally Transmitted Pathogens.” Environmental Microbiology. 2nd Ed. Academic Press, San Diego, CA, 2009. 445-484. Griffith, J. F., Weisberg, S. B., and McGee C. D. 2003 Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J. Wat. Health 1: 141-151. Hathaway, J. M. and Hunt, W. F. 2008 URBAN Waterways: Removal of Pathogens in Stormwater. North Carolina Cooperative Extension Service, AGW-588-16W. Ingerson, M. M. and Reid, A. 2011 E. coli: Good, Bad, & Deadly. American Academy of Microbiology. pg. 1-14. Rivera, B. and Rock, C. 2011 Microbial Source Tracking: Watershed Characterization and Source Identification. Arizona Cooperative Extension, az1547. Roslev, P., and Bukh, A. S. 2011 State of the Art Molecular Markers for Fecal Pollution Source Tracking in Water. Appl Microbiol Biotechnol 89: 1341-1355. Soller, J.A, Schoen, M. E., Bartrand, T., Ravenscroft, J.E., and Ashbolt, N. J. 2010 Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research 30: 1-18. Vieira, N., Bates, S. J., Solberg, O. W., Ponce, K., Howsmon, R., Cevallos, W., Trueba, G., Riley, L. and Eisenberg, J. N. S. 2007 High Prevalence of Enteroinvasive Escherichia Coli Isolated in a Remote Region of Northern Coastal Ecuador. Am J Trop Med Hyg 76: 528-533. U. S. Environmental Protection Agency. 2008 Arizona 2008 Water Quality Assessment Report. [Online] http://iaspub.epa.gov/waters10/attains_index.control?p_area=AZ#wqs. 155 U.S. Environmental Protection Agency. 2009 Water Quality Standards [Online] http://www.epa.gov/waterscience/standards/wqslibrary/az/az_9_wqs.pdf U. S. Senate. 2002 Federal Water Pollution Control Act. [Online] http://www.epw.senate.gov/water.pdf. 156 Figuras y Tablas Figura 1. E. coli – Gram-negativos, anaerobios facultativos, procariotas vara; con múltiples flagelos y fimbrias. E. coli puede causar infecciones del tracto urinario, diarrea de viajero y las infecciones nosocomiales. (Dennis Kunkel Microscopy, Inc./Visuals Unlimited, Inc.) 157 Tabla 1. Cepas dañinas de E. coli Cepas de E. coli Modo de Transmisión Enfermedad ETEC provoca diarrea sin fiebre. Es común en los bebés y es a menudo la causa de diarrea de los viajeros. EPEC causa diarrea acuosa, a La ingestión de alimentos o agua, veces con sangre. Es una Enteropatógeno el contacto humano directo e causa común de diarrea (EPEC) indirecto infantil en los países subdesarrollados. Cepas de EHEC causan diarrea con sangre y, a veces pueden dañar los riñones y el progreso al síndrome urémico Enterohemorrágico Alimentos / ingestión, el contacto hemolítico potencialmente humano directo o indirecto fatal (SUH). EHEC ha (EHEC) causado muchas epidemias de origen alimentario en todo el mundo; O157: H7 es la cepa más conocida. EIEC causa disentería, como La ingestión de alimentos o agua Enteroinvasivo la diarrea. La fiebre es un (EIEC) síntoma común. Enterotoxigénic (ETEC) Alimentos o ingestión de agua 158 Tabla 2. Niveles de E. coli permitidos para los diferentes tipos de agua (ADEQ, 2010 and EPA, 2009) Propósito Agua Potable Aguas Superficiales con Contacto Corporal Completo (natación) Aguas Superficiales con Contacto Corporal Parcial (pesca, paseo en embarcaciones, etc…) Aguas Residuales (riego o descarga) Nivel de E. coli Cero 235 ufc/100 mL 575 ufc/100 mL < 2.2 ufc/100 mL < 1.0 ufc/100 mL 159 APPENDIX G RAW DATA FOR APPENDIX A Table 1. Raw Data from the San Francisco River. Sampling Sites Upper San Francisco Upper San Francisco Upper San Francisco Upper San Francisco Upper San Francisco Upper San Francisco Upper San Francisco Upper San Francisco Upper Blue Upper Blue Upper Blue Upper Blue Upper Blue Upper Blue Upper Blue Lower Blue Lower Blue Lower Blue Lower Blue Lower Blue Date Collected 10/25/2010 10/25/2010 12/15/2010 12/15/2010 12/15/2010 12/15/2010 12/15/2010 12/15/2010 10/28/2010 10/28/2010 10/28/2010 11/27/2010 11/27/2010 7/16/2011 7/16/2011 7/3/2010 10/26/2010 10/26/2010 10/26/2010 10/26/2010 E.coli 4.16E+01 4.57E+01 1.51E+01 1.81E+01 3.07E+01 1.03E+01 1.92E+01 1.76E+01 ND 1.34E+01 1.21E+01 4.32E+01 4.32E+01 3.08E+02 5.79E+02 2.61E+02 5.93E+01 4.59E+01 5.82E+01 6.28E+01 Human (100ml) 7.64E+02 4.54E+02 4.84E-01 2.96E-01 1.51E-01 4.28E+09 8.03E+00 0.00E+00 0.00E+00 2.45E+00 0.00E+00 3.13E+01 1.39E+01 1.75E+01 5.55E+02 9.60E+00 2.45E+02 6.27E+00 1.16E+02 4.50E+02 Total (100ml) 2.24E+04 2.82E+04 1.88E+04 9.00E+04 6.39E+04 7.41E+04 2.92E+04 4.55E+04 1.62E+03 6.51E+03 1.14E+03 6.34E+03 4.10E+03 1.25E+05 4.33E+05 2.67E+02 2.07E+04 1.65E+04 2.00E+04 1.29E+04 Bovine (100ml) 0.00E+00 2.08E+03 2.31E+02 8.59E+01 0.00E+00 2.66E+01 0.00E+00 7.34E+01 8.56E+01 2.52E+02 0.00E+00 3.18E+02 1.75E+02 0.00E+00 4.33E+14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.68E+02 160 Lower Blue Lower Blue Lower Blue Lower Blue Lower Blue Lower Blue State Lands/BLM 11/4/2010 11/4/2010 11/16/2010 11/16/2010 8/15/2011 8/15/2011 7/24/2010 ND ND 6.40E+01 7.70E+01 2.42E+03 2.42E+03 7.27E+02 4.73E+00 5.53E+00 2.85E+02 4.85E-01 1.06E+03 1.07E+03 2.55E+02 9.71E+02 1.18E+02 3.42E+03 1.78E+03 3.58E+06 2.80E+06 7.61E+03 4.21E+02 1.58E+02 2.28E+02 5.85E+02 3.85E+04 2.78E+04 1.47E+05 State Lands Main Cross 7/21/2010 1.41E+03 3.25E+02 3.68E+03 0.00E+00 State Lands Main Cross 10/17/2010 1.45E+01 0.00E+00 0.00E+00 1.07E+13 State Lands Main Cross 10/17/2010 1.45E+01 0.00E+00 0.00E+00 0.00E+00 State Lands Main Cross 10/17/2010 1.97E+01 0.00E+00 0.00E+00 6.31E+02 State Lands Main Cross 10/17/2010 1.97E+01 0.00E+00 0.00E+00 3.39E+01 State Lands Main Cross 7/6/2011 ND 0.00E+00 1.09E+06 7.32E+02 State Lands Main Cross 7/6/2011 ND 0.00E+00 1.12E+06 1.76E+03 State Lands Main Cross 9/11/2011 6.49E+02 7.60E+00 4.05E+05 1.96E+03 State Lands Main Cross 9/11/2011 6.87E+02 1.05E+02 2.26E+03 6.85E+02 State Lands Main Cross 11/19/2011 4.61E+01 0.00E+00 3.43E+05 0.00E+00 161 State Lands Main Cross 11/19/2011 3.76E+01 0.00E+00 2.57E+05 0.00E+00 State Lands Main Cross 8/1/2011 1.99E+03 7.59E+00 2.52E+02 0.00E+00 State Lands Main Cross 8/1/2011 1.73E+03 0.00E+00 1.33E+04 0.00E+00 State LandsHole in the Rock 7/12/2010 1.30E+03 6.30E+02 1.15E+04 0.00E+00 7/21/2010 9.21E+02 7.83E+02 6.15E+03 0.00E+00 11/1/2010 2.63E+01 1.03E+05 4.63E-04 0.00E+00 11/1/2010 1.45E+01 0.00E+00 0.00E+00 0.00E+00 8/1/2011 2.42E+03 6.80E+02 3.80E+05 1.08E+03 8/1/2011 2.42E+03 5.92E+02 1.33E+06 4.01E+02 11/19/2011 4.74E+01 4.58E+00 7.48E+05 1.43E+03 11/19/2011 4.16E+01 1.11E+00 1.10E+06 2.31E+02 11/1/2010 2.69E+01 6.70E+04 0.00E+00 1.31E+02 11/1/2010 3.35E+01 0.00E+00 3.31E+02 9.29E+01 7/24/2010 11/9/2010 11/9/2010 7.70E+02 2.18E+01 3.75E+01 6.63E+02 0.00E+00 0.00E+00 1.44E+04 0.00E+00 3.89E-08 0.00E+00 0.00E+00 1.06E+11 State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock State LandsHole in the Rock Kaler Deeded Land Kaler Deeded Land Kaler Deeded Land 162 Kaler Deeded Land Kaler Deeded Land Kaler Deeded Land 11/9/2010 11/9/2010 7/5/2011 3.22E+01 2.69E+01 2.42E+03 0.00E+00 5.00E+01 1.22E+02 6.52E-06 7.65E-06 7.88E+08 0.00E+00 0.00E+00 2.76E+03 Clifton North End Bridge 7/23/2010 2.42E+03 2.90E+02 9.38E+03 0.00E+00 Clifton North End Bridge 11/2/2010 1.32E+01 3.67E+07 0.00E+00 6.20E+01 Clifton North End Bridge 11/2/2010 1.97E+01 0.00E+00 0.00E+00 0.00E+00 Clifton at Old Dump Clifton at Old Dump Clifton at Old Dump Clifton at Old Dump Clifton at Old Dump Clifton at Old Dump Clifton at Old Dump Clifton at Old Dump Below Morenci Gulch Below Morenci Gulch Below Morenci Gulch 7/1/2010 7/23/2010 11/2/2010 11/2/2010 8/1/2011 8/1/2011 11/19/2011 11/19/2011 7/21/2010 11/3/2010 11/3/2010 8.82E+01 1.73E+03 7.40E+00 5.20E+00 2.42E+03 2.42E+03 2.31E+01 2.49E+01 2.42E+03 8.50E+00 8.50E+00 9.23E+01 1.40E+03 0.00E+00 0.00E+00 3.22E+04 2.11E+02 3.59E+00 4.53E+04 6.23E+02 0.00E+00 0.00E+00 7.90E+02 8.35E+03 0.00E+00 0.00E+00 1.07E+06 1.92E+06 8.86E+05 8.26E+05 5.43E+03 0.00E+00 0.00E+00 1.25E+02 0.00E+00 2.57E+02 1.30E+02 1.07E+12 0.00E+00 3.46E+02 1.09E+02 1.33E+03 1.15E+13 0.00E+00