Download Nombre - Departamento de Electricidad y Electrónica
Document related concepts
Transcript
ELECTRÓNICA FÍSICA / 11 Febrero de 2000 Algunos datos útiles: 1 uma = 1.66·10-24 gr 1 nm = 10-7 cm kB=8.614·10-5 eV/K 1 eV=1.6×10-19 J q =1.6×10 -19 C II III IV V VI 9.01 10.81 12.01 14.01 16.0 Be B C N O 24.31 26.98 28.09 30.97 32.06 Mg Al Si P S 40.08 69.72 72.59 74.92 78.96 Ca Ga Ge As Se 87.62 114.82 118.69 121.75 127.6 Sr In Sn Sb Te 1) El InSb es un semiconductor con estructura cinc-blenda y su parámetro de red es a(InSb)= 0.648 nm. Calcula, indicando brevemente las operaciones: (a) La distancia planos (100) consecutivos que contienen átomos de Sb d(100)Sb =............ nm (b) La distancia de enlace In-Sb d(In-Sb) = ............ nm (c) El número de átomos de In en cada cm3 N(In) = ............ cm-3 (d) La densidad del InSb densidad=...........gr/cm2 2) Sea un semiconductor sometido a un campo eléctrico positivo en la dirección x. (a) Di si los estados desocupados de la banda de valencia (BV) tenderán hacia momentos k positivos o negativos, justificando brevemente tu respuesta e ilustrándolo con un dibujo (b) Basándote en el apartado anterior, argumenta si la velocidad neta de los estados desocupados va a ser positiva o negativa, ayudándote para ello de la gráfica vg(k) (c) Deduce la relación existente entre la corriente eléctrica y la suma de velocidades de los estados desocupados y demuestra que la corriente eléctrica debida a la BV va a ser positiva En la Figura adjunta están representadas las curvas de dispersión E(k) de un semiconductor. 3) (a) ¿Cuál es su anchura de banda prohibida? Eg = ......... eV ¿Es directo o indirecto? 2 ................................ (b) Indica en la figura las sub-bandas de huecos pesados, huecos ligeros y spin-órbita (etiquétalas con hh, lh y so) ¿Cuáles de estas tres sub-bandas necesitarías considerar ................................... 4) (a) ¿Cuántos mínimos equivalentes de la BC hay que considerar para el cálculo de mn?. Neq = .......... (b) Dibuja las superficies isoenergéticas para E= 0.9 eV E - EV (eV) para el cálculo de mp ? 1 0 -1 L <111> <100> X 5) Para T=300K, el silicio tiene una anchura de banda prohibida EG = 1.12 eV y unas densidades efectivas de estados NC = 3.221019 cm-3 y NV= 1.831019 cm-3 (a) Determina cúal será la máxima concentración de donores ND para la que sigue siendo válida la aproximación de semiconductor no degenerado. (Se supone NA despreciable). Indica de forma concisa cómo lo calculas ND = ............ cm-3 (b) Calcula el valor de la concentración intrínseca de portadores a esta temperatura, indicando las operaciones ni = ............ cm-3 6) Representa el campo eléctrico y la densidad de carga del semiconductor representado en la figura. (x) EC(x) Ei(x) EF EV(x) (x) x1 x2 x1 x2 x3 x4 x x3 x4 x x1 x2 x3 x4 x 7) a) En el GaAs el carbono tiene un comportamiento anfótero, actuando unas veces como donor y otras como aceptor. Explica muy brevemente por qué. b) Indica si los siguientes semiconductores son de tipo p o de tipo n Si dopado con B ...... GaAs dopado con S ........ Si dopado con P ...... GaAs dopado con Be ........ Si dopado con Sb ...... GaN dopado con Mg ........ 8) Da el valor de las concentraciones de electrones y huecos en el equilibrio para las diferentes situaciones que se indican a continuación y di a qué rango de temperaturas corresponde (“congelación”, “extrínseco”, “intermedio entre intrínseco y extrínseco” o “intrínseco”). T (K) ni (cm-3) ND (cm-3) NA (cm-3) (a) 300 1010 31016 0 (b) 300 1010 41014 1015 (c) 700 51016 1013 0 (d) 700 51016 31016 0 n0 (cm-3) p0 (cm-3) rango de tª 9) Contesta brevemente: (a) Usando el diagrama de bandas de energía indica cómo se visualiza la recombinación Auger (intrínseca) y la generación mediante ionización por impacto ( “por avalancha”). (b) ¿ Por qué la recombinación radiativa es importante en el GaAs y es despreciable en el silicio? (c) Explica la diferencia entre “equilibrio” y “condiciones estacionarias” 10) El Zn en silicio actúa como centro de generaciónrecombinación, con dos niveles profundos, ambos de tipo aceptor, de modo que dicho defecto puede encontrarse como Zn0, Zn- o Zn= . (Ver Figura). Representa de todos los posibles procesos de emisión en que intervenga este defecto, indicando en cada uno: (i) el estado inicial y final de carga, (ii) el tipo de portador capturado y (iii) la energía que se requiere. 11) Sea un semiconductor intrínseco homogéneo, con n0 p0 ni , en el que los procesos de generación-recombinación tienen lugar mediante un centro profundo de un solo nivel con ET´Ei y n p . Suponemos además condiciones estacionarias y baja inyección (y n=p ) . Deduce una expresión sencilla para la tasa de recombinación R . (Indica cómo lo haces, señalando en particular la expresión de la que partes y las aproximaciones que usas). _________________________________________________________________________________ 12) Sea una muestra de semiconductor tipo n a temperatura ambiente, con ND =1017 cm-3, NA 0, n = 4600 cm2V-1s-1, p = 310 cm2 V-1s-1 , p = 5·10-9 s y kBT= 0.025 eV. Calcula: (a) Su resistividad = ............ ·cm (b) El coeficiente de difusión de los minoritarios Dp = ........... cm2s-1 (c) La longitud de difusión de los minoritarios Lp = ............ m (d) La velocidad de arrastre de los electrones para un campo eléctrico =10 V/cm varr,n=......... cm/s 13) Un semiconductor de tipo p está sometido a una generación por luz constante y uniforme de valor conocido GL (GL(x,t)=constante, para todo x>0). Una de las superficies se encuentra en x=0 mientras que la otra está suficientemente lejos como para no ser tenida en cuente. La longitud de difusión de minoritarios Ln , el coeficiente de difusión Dn y el tiempo de vida n tienen valores conocidos. No existe campo eléctrico aplicado. a) Escribe la ecuación de difusión de minoritarios para x>0 en el caso que nos ocupa, indicando los términos que puedes despreciar b) Di el valor del exceso de portadores n muy lejos de la superficie n = ............ c) Supón que la superficie tiene una velocidad de recombinación muy grande sn » (sumidero perfecto). Di el valor del exceso de minoritarios en la superficie n(0)= ............ d) Con la suposición del apartado anterior, dibuja cualitativamente n(x) e) Resuelve analíticamente la ecuación del apartado a) aplicando la suposición del apartado c). (Si quieres, vale con que des la solución). n(x)= f) Explica cuál será el criterio para decir si un punto de este semiconductor está "muy lejos" de la superficie, y por qué 14) En un instante dado, un semiconductor homogéneo tiene la distribución de minoritarios p(x) que se representa en la figura y tiene un campo eléctrico aplicado positivo. ( p(0)<< ni) (a) Dibuja una gráfica con Jp,dif (x) y otra con Jp,arr (x) (b) Dibuja Fp(x) y Fn(x) (en una misma gráfica)