Download TEMA 1 - MATEMÁTICAS 1º ESO

Document related concepts

Divisibilidad wikipedia , lookup

División (matemática) wikipedia , lookup

Mínimo común múltiplo wikipedia , lookup

Máximo común divisor wikipedia , lookup

Dominio de integridad wikipedia , lookup

Transcript
MATEMÁTICAS 1º ESO
TEMA 1
NÚMEROS NATURALES
Criterios De Evaluación de la Unidad
1
Efectuar correctamente operaciones combinadas de números naturales, aplicando
correctamente las reglas de prioridad y haciendo un uso adecuado de signos y
paréntesis.
2
Resolver operaciones efectuando aproximaciones y redondeos.
3
Reconocer si un número es múltiplo o divisor de otro y obtener los múltiplos y los
divisores de un número.
4
Aplicar correctamente los criterios de divisibilidad por 2, por 3, por 5, por 9 y por 11.
5
Diferenciar un número primo de un número compuesto.
6
Descomponer números en factores primos.
7
Determinar el máximo común divisor y el mínimo común múltiplo de dos o más
números mediante su descomposición en factores primos.
8
Resolver correctamente problemas que requieran aplicar el cálculo de máximo
común divisor o del mínimo común múltiplo.
MATEMÁTICAS 1º ESO
INDICE
1. Sistema de numeración decimal
2. Los números naturales
2.1 Utilidad de los números naturales
2.2 Representación sobre la recta
2.3 Operaciones
3. Divisibilidad
3.1 Múltiplos de un número
3.2 Divisores de un número
3.3 Criterios de divisibilidad
3.4 Números primos y compuestos
3.5 Descomposición factorial
3.6 Máximo común divisor
3.7 Mínimo común múltiplo
MATEMÁTICAS 1º ESO
1. SISTEMA DE NUMERACIÓN DECIMAL
A lo largo de la historia, las civilizaciones utilizaron diferentes sistemas de numeración.
De algunos de ellos, como el romano o el sexagesimal de la antigua Babilonia, todavía
quedan algunos vestigios en nuestra sociedad actual, todavía se escribe en algunos
casos el año MMX o la hora 18:56, por ejemplo.
Nuestro sistema de numeración actual es un sistema posicional y decimal. Decimos que
es posicional porque el valor de una cifra depende del lugar que ocupa en el número: el
primer 7 del número 757 no vale lo mismo que el segundo 7. El valor del segundo 7 es
siete unidades, pero el valor del primer 7 es de 700 unidades.
Decimos que es decimal porque diez unidades de un determinado orden equivalen a
una unidad del orden superior. Así, diez unidades son una decena; diez decenas son una
centena, diez centenas forman un millar, etc. Por ello, un número es igual a la suma de
los productos de sus cifras por sus valores respectivos. Por ejemplo, el número 75.269
se puede descomponer de la siguiente manera:
75.269 = 70.000 + 5.000 + 200 + 60 + 9 = = 7x10.000 + 5x1.000 + 2x100 + 6x10 + 9
MATEMÁTICAS 1º ESO
2. LOS NÚMEROS NATURALES
Los “números Naturales” son todos los números mayores de cero (algunos autores
incluyen también el 0) que sirven para contar. No pueden tener parte decimal,
fraccionaria, ni imaginaria. N = [1, 2, 3, 4, 5...]. Al ser mayores de cero son los números
enteros positivos. El conjunto de “números Naturales” se representa con la letra N.
2.1. Utilidad de los números naturales

Contar: Saber exactamente el número de elementos de un conjunto.

Ordenar: Cuando se asocia un número a cada elemento de un conjunto, éste
queda ordenado. Al usar los números naturales para ordenar se denominan
números ordinales.

Estimar: Calcular de forma aproximada los elementos de un conjunto.
2.2. Representación sobre la recta
1º Trazamos sobre una línea recta y marcamos un punto (central) que llamaremos
origen y le daremos el valor 0.
2º A partir del origen, trazamos segmentos iguales consecutivos.
3º Asignamos el 1 al extremo del primer segmento, el 2 al siguiente y así sucesivamente.
2.3. Operaciones con números naturales
Con los números naturales podemos efectuar diversas operaciones, entre ellas las
cuatro operaciones básicas: suma, resta, multiplicación y división.
Suma
O adición, consiste en agregar una cantidad a otra.
248 + 345 = 583
Sumandos
Suma o total
MATEMÁTICAS 1º ESO
PROPIEDADES DE LA SUMA:
a) Conmutativa: El orden de los sumandos no altera el resultado
5+7=7+5
12 = 12
b) Asociativa: El resultado no depende de la forma en que se agrupen los sumandos.
(2 + 5) + 10 = 2 + (5 + 10)
17 = 17
c) Elemento neutro: Es el número que sumado con cualquier otro no lo varía. En la
suma es el 0.
26 + 0 = 26
Resta
O sustracción, es la operación opuesta a la suma y permite hallar la diferencia entre dos
números.
1.007 - 428 = 579
Minuendo Sustraendo
Resta o diferencia
Además toda resta cumple que:
428 + 579 = 1.007
Sustraendo Resta
Minuendo
Multiplicación
Multiplicar consiste en sumar una misma cantidad cierto número de veces.
Una estantería de la biblioteca tiene 24 estantes. Si
en cada estante hay 56 libros, ¿cuántos libros hay en
la estantería?
Resultado: Hay 1.344 libros
24
Factor
X 56 Factor
144
120
1344 producto
MATEMÁTICAS 1º ESO
PROPIEDADES DE LA MULTIPLICACIÓN :
PROPIEDAD
ENUNCIADO
EJEMPLO
Conmutativa
Si cambiamos el orden de los factores, el
resultado no varía.
12 · 3 = 3 · 12
36 = 36
Asociativa
El resultado no depende de la forma en la
que se agrupen los factores.
(9 · 3) · 4 = 9 · (3 · 4)
27 · 4 = 9 · 12
108 = 108
Elemento neutro
El 1 es el elemento neutro de la
multiplicación, pues al multiplicar
cualquier número por 1, el resultado no
varía.
34 · 1 = 34
Distributiva de la El producto de un número por una suma (o 3· (4 + 7) = 3 · 4 + 3 · 7
multiplicación
resta) es igual a la suma (o resta) de este
3 · 11 = 12 + 21
respecto a la suma
número por cada sumando (o sustraendo)
33 = 33
Esta última propiedad también puede aplicarse para transformar una suma de
productos con un factor común. Es decir,
2 · 9 + 2 · 5 = 2 · (9 + 5)
División
“Dividir” es repartir una cantidad en partes iguales.
Dividendo Divisor
Susana tiene que repartir 125 fotografías en 25
125 25
cajas. ¿Cuántas fotografías debe poner en cada
00 5
una?
Resto Cociente
Resultado: Pondrá 5 fotografías en cada caja.
Decimos que dos números están emparentados por la relación de divisibilidad cuando
uno cabe en el otro una cantidad exacta de veces, es decir, cuando su cociente es
exacto. También podemos decir simplemente que cuando la división entre dos números
es exacta, decimos que existe entre ellos relación de divisibilidad.
D d
0
c
 La división es exacta  D es divisible entre d  D es múltiplo de d  d es
divisor de D.
MATEMÁTICAS 1º ESO
En estos casos en que dos números están emparentados por la relación de divisibilidad
decimos que  el mayor es múltiplo del menor y menor es divisor del mayor.
Existen dos tipos de divisiones según si el resto es 0 o no.
DIVISIÓN EXACTA
Una división es exacta si el resto es 0.
DIVISIÓN ENTERA
Una división es entera si el resto es distinto
de 0.
En toda división exacta se cumple que:
Divisor · Cociente = Dividendo
Resto = 0
En toda división entera se cumple:
Divisor · Cociente + Resto = Dividendo
Ejemplo:
Ejemplo:
480 60
32 5
00
2
8
6
Operaciones combinadas
En las expresiones en la que aparecen varias operaciones juntas hay que tener en cuenta
el orden en que debemos efectuarlas.
PRIORIDAD EN OPERACIONES COMBINADAS
1º Paréntesis y corchetes
2º Potencias y raíces
3º Multiplicación y división (en orden)
4º Sumas y restas (de izquierda a derecha)
Ejemplos:
SIN PARÉNTESIS
CON PARÉNTESIS
5·4+3
42 – 24 : 4 · 5
3 + 5 · (4 + 2)
20 + 3
42 – 6 · 5
3+5·6
MATEMÁTICAS 1º ESO
23
42 – 30
12
3 + 30
33
3. DIVISIBILIDAD
3.1. Múltiplos de un número
Un número es múltiplo de otro si se obtiene multiplicando éste, por un número natural.
Hallar los múltiplos de 2 y de 15:
Los múltiplos se obtienen multiplicando estos números por la sucesión de números
naturales. Por lo tanto
Múltiplos de 2: M(2)= 2,4,6,8,10,....
Múltiplos de 15: M(15)= 15,30,45,60,75....
PROPIEDADES

Cualquier número es múltiplo del 1; a∙1=a, b∙1=b, con números 5∙1=5, 4∙1=4, por
que cualquier número al multiplicarlo por 1 sigue siendo el mismo y también es
múltiplo de 1.

Un número es siempre múltiplo de sí mismo.

Los múltiplos de un número (distinto de cero) son infinitos.

La suma de dos o más múltiplos de un número es también múltiplo de dicho
número.
Suma de Múltiplos
Si le llamamos “a” al número y m∙a y n∙a a dos de sus múltiplos decimos que
 m  a +n  a = (m+n)  a
p.e.
10 es M(5) y 15 es M(5) por lo tanto 10+15=25; 25 es M(5)
MATEMÁTICAS 1º ESO

El producto de dos o más múltiplos de un número es también múltiplo de dicho
número.
Producto de Múltiplos
Si le llamamos “a” al número y m∙a y n∙a a dos de sus múltiplos decimos que
(m∙a)∙(n∙a)= m∙n∙a2= (m∙n∙a)∙a
p.e.
14 es M(7) y 21 es M(7) por lo tanto 14·21=294; 294 en M(7)

Si un número es múltiplo de otro y éste lo es de un tercero, el primer número es
múltiplo del tercero.
p.e. 30 es M(10) y 10 es M(5) por lo tanto 30 es M(5)

Si a un múltiplo de “a” se le suma otro número que no lo sea, el resultado no es
múltiplo de “a”.
p.e. 10 es M(5) y 10+11=21, el 11 no es múltiplo de 5 por lo tanto 21
tampoco es múltiplo de 5.
3.2. Divisores de un número
Los divisores de un número son aquellos valores que lo dividen en partes iguales, es
decir, que la división entre estos número es exacta. Para obtener todos los divisores de
un número “a” buscamos por tanto todas las divisiones exactas de éste  si a =b  c
 “b” y “c” son divisores de “a.
Halla los divisores de 45
1º Dividimos por la sucesión de números naturales menores que nuestro número, hasta
que el cociente sea igual o menor que el divisor y siempre que la división sea exacta.
45:1=45
45:2=22 y r=1
45:5=9
45:6=7 y r=3
45:3=15
45:4=11 y r=1
45:7=6 y r=2 (cociente < divisor)
2º En las divisiones exactas el divisor y el cociente son divisores de 45:
1 y 45, 3 y 15, 5 y 9
MATEMÁTICAS 1º ESO
3º Los divisores de 45 son D(45)= 1,3,5,9,15,45
PROPIEDADES

El número 1 es divisor de cualquier número. P.e. 7:1=7, 8:1=8, 121:1=121…

Un número es siempre divisor de sí mismo. P.e. 7:7=1, 8:8=1, 121:121=1…

Si un número es divisor de otro dos, también es divisor de su suma.
P.e.5 es D(10) y 5 es D(15) por lo tanto 10+15=25 entonces 5 es D(25)

Si un número es divisor de otros dos, también es divisor de su producto.
P.e.7 es D(14) y 7 es D(21) por tanto, 21·14=294 entonces 7 es D(294)

Si un número es divisor de otro, y éste lo es de un tercero, el primer número es
divisor del tercero.
P.e.5 es D(10) y 10 es D(30) por lo tanto 5 es D(30)

Un número tiene una cantidad finita de divisores
3.3. CRITERIOS DE DIVISIBILIDAD
Los criterios de divisibilidad son las reglas que nos permiten reconocer fácilmente, sin
necesidad de hacer las divisiones, cuando un número es divisible por otro. Estas reglas
se llaman criterios de divisibilidad.
CRITERIO
DIVIBILIDAD POR 2
DIVISIBILIDAD POR 3
DIVISIBILIDAD POR 5
DIVISIBILIDAD POR 9
DIVISIBILIDAD POR
11
DEFINICIÓN
Un número es divisible por 2 si termina en 0 o cifra par.
Un número es divisible por 3 si la suma de sus cifras es múltiplo de
3.
Un número es divisible por 5 si termina en 0 o en 5.
Un número es divisible por 9 si la suma de sus cifras es múltiplo de
9
Un número es divisible por 11 si la resta entre la suma de las cifras
que ocupan lugar par y la suma de las cifras que ocupan lugar impar
es 0 o múltiplo de 11.
Indica si 840 es divisible por 2, 3, 5, 9 y 11.
-
Termina en 0  Es divisible por 2 y por 5
MATEMÁTICAS 1º ESO
-
8 + 4 + 0 = 12, es múltiplo de 3  Es divisible por 3
-
8 + 4 + 0 = 12, no es múltiplo de 9  NO es divisible por 9
-
8 + 0 = 8, 8 – 4 = 4  NO es divisible por 11; Por lo tanto el número 840 es divisible
por: 2, 3 y 5
3.4. Números primos y compuestos
Cualquier número natural, a excepción del 1, tiene como mínimo dos divisores
naturales, él mismo y el uno.
Podemos clasificar los números naturales, menos el 1, en primos o compuestos según si
tienen dos divisores distintos o más de dos.

Números primos  Son aquellos que sólo tienes dos divisores diferentes: el uno
y el mismo número. (Por ejemplo el 2, 3, 5, 7…)

Números compuestos  Son aquellos que tiene más de dos divisores diferentes.
(Por ejemplo el 4, 6, 8, 20…)

El número 1, aunque solo tiene un divisor, no se considera primo.

Los números primos menores que 100 son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
3.5. Descomposición en factores primos o descomposición factorial
La descomposición factorial de un número consiste en expresarlo como un producto de
factores, siendo todos los factores primos.
Si un factor aparece repetido, se escribe en forma de potencia (recuerda que 2·2·2·2=2 4)
Existen varias formas de obtener esta descomposición:
Método 1
Descomponer en factores primos el número 24:
24 = 12 · 2
24 = 4 · 6
24 = 3 · 8
Como los factores encontrados no son número primos, seguimos descomponiendo
24 = 12 · 2 = 3 · 4 · 2 = 3 ·2 ·2 · 2
24 = 4 · 6 = 2 · 2 · 2 · 3
24 = 3 · 8 = 3 · 2 · 2 · 2
24 = 3 · 23
24 = 23 · 3
24 = 3 · 23
MATEMÁTICAS 1º ESO
Método 2 (Este es el método que aplicaremos en clase)
3.6. Máximo común divisor
El máximo común divisor (M.C.D) de dos o más números es el divisor común más
grande que poseen dichos números.
¿Cómo se calcula?

Se descomponen en factores primos cada uno de los números.

Elegimos los factores comunes elevados al exponente más pequeño.

Hacemos el producto de los factores que hemos elegido.
Calcular del M.C.D de 36, 72 y 120

Descomponemos en factores los tres números.
36 2
72 2
120 2·5
18 2
36 2
12
2
9
3
18 2
6
2
3
3
9
3
3
3
3
3
1
1
36 = 22 · 32
1
120 = 23 · 3 · 5
72 = 23 · 32

Elegimos los factores comunes elevados al exponente más pequeño.
o Factores primos comunes: 2 y 3
MATEMÁTICAS 1º ESO
o Factores primos comunes elevados al menos exponente: 22 y 3

Hacemos el producto de los factores que hemos elegido.
M.C.D.(36, 72, 120) = 22 · 3 = 12
3.7. Mínimo común múltiplo
El mínimo común múltiplo (m.c.m.) de dos o más números es el múltiplo común más
pequeño que poseen dichos números.
¿Cómo se calcula?

Descomponemos en factores primos cada uno de los números.

Seleccionamos los factores primos comunes y los no comunes, elevados al mayor
exponente.

Hacemos el producto de los factores que hemos elegido.
Calcular el m.c.m. de 12, 24 y 28

Descomponemos en factores primos cada uno de los números.
12 2
6
2
3
3
1
12 = 22 · 3

24 2
12 2
6
2
3
3
1
24 = 23 · 3
28 2
14 2
7
7
1
28 = 22 · 7
Seleccionamos los factores primos comunes y los no comunes, elevados al mayor
exponente.
o Factores primos comunes y no comunes: 2, 3 y 7
o Factores primos comunes y no comunes elevados al mayor exponente: 23
y3

Hacemos el producto de los factores que hemos elegido.
m.c.m.(12, 24, 28) = 23 · 3 · 7 = 168