Download Combinatoria y Probabilidad
Document related concepts
Transcript
Combinatoria y Probabilidad Prof. Isaías Correa M. Aprendizaje esperado • Concepto de factorial. • Concepto de probabilidad. • Problemas que involucren la probabilidad clásica. • Situaciones de probabilidad en la unión de eventos. • Situaciones problemáticas de probabilidad total. • Probabilidad en la intersección de eventos. • Probabilidad condicionada. 1. Teoría combinatoria 2. Probabilidad 1. Teoría Combinatoria 1.1 Principio multiplicativo Se tienen los elementos a1 , a2 , a3 ,..., an que pueden ser elegidos de k1 , k2 , k3 ,..., kn formas distintas. Por lo tanto, si se quieren elegir todos los elementos, entonces se pueden escoger de k1 k 2 k3 ... k n maneras diferentes. Ejemplo: ¿Cuántas cifras de tres números se pueden formar usando los impares de los números 1, 2, 4, 5, 6, 7 y 9, si éstos no pueden repetirse? 5 6 4 En total hay 7 números. Si ya se ocuparon dos, sólo quedan 5 opciones. Para que el número sea impar se tienen 4 opciones el {1, 5, 7, 9} En total hay 7 números. Como ya se ocupó uno en la última cifra sólo quedan 6 opciones. Por lo tanto, se pueden formar 5 · 6 · 4 = 120 cifras. 1. Teoría Combinatoria 1.2 Principio aditivo Se tienen los elementos a1 , a2 , a3 ,..., an que pueden ser elegidos de k1 , k2 , k3 ,..., kn formas distintas. Por lo tanto, si se quieren elegir uno de los elementos, entonces se puede escoger de k1 k2 k3 ... kn maneras diferentes. Ejemplo: Un estudiante para llegar al colegio en la mañana dispone de 3 líneas de colectivos o dos empresas de buses. ¿De cuántas maneras puede elegir este estudiante su viaje para llegar al colegio cada mañana? 3 + 2 = 5 Por lo tanto el estudiante dispone de 5 formas para llegar al colegio Tiene 2 empresas de buses. Dispone de 3 líneas de colectivos. Por lo tanto, se puede hacer el viaje de 3 + 2 = 5 maneras. 1. Teoría Combinatoria Factorial de n = n ! ; 0! = 1 Ejemplo: 6! = 6x5x4x3x2x1 = 720 1.2 Permutación Sin repetición Definición Fórmula Ejemplo Con repetición Grupos que se forman con n Grupos de n elementos que se elementos a la vez. Se repiten a, b,…,r veces. diferencian en el orden de estos elementos. Pn n ! Pr n n! a ! b ! ... r ! o Pnn,n nn ¿De cuántas maneras se pueden ¿De cuántas maneras se pueden ordenar en una fila a 4 personas? ordenar en una línea 5 banderas de las cuales 3 son blancas y 2 son azules? P4 4 ! 4 3 2 1 24 P2,3 5 5! 5 4 3! 10 2 ! 3 ! 2 1 3 ! 1. Teoría Combinatoria 1.3 Variación: Sin repetición Definición Fórmula Ejemplo Con repetición Grupos con k elementos que se Misma definición anterior, pero en forman con los n elementos que se este caso los elementos se tienen. Influye el orden de sus pueden repetir. componentes. n! n Vk ,k n k (n k ) ! ¿De cuántas formas se puede ¿Cuántos números de 3 dígitos se elegir un presidente, un secretario y pueden formar con los primeros 6 un tesorero dentro de un grupo de números naturales? 10 personas? Vk n V3 10 10 ! 10 9 8 7 ! 720 (10 3) ! 7! V3,3 63 216 6 1. Teoría Combinatoria 1.4 Combinación Sin repetición Definición Con repetición Grupos con k elementos que se Misma definición anterior, pero en forman con los n elementos que este caso los elementos se se tienen. No influye el orden de pueden repetir. sus componentes. Fórmula Ck n n n! k k ! (n k ) ! n k 1 (n k 1) ! n C( k ,k ) k k ! (n 1) ! ¿De cuántas maneras se pueden Hay 4 tipos diferentes de botellas elegir a 5 personas de entre 8 para en una bodega. ¿De cuántas integrar una comisión? formas se pueden elegir 3 de ellas? Ejemplo 8! 8 7 6 5! C5 56 5 ! (8 5) ! 5 ! 3 2 1 8 C(3,3) 4 6! 6 5 4 3! 20 3 ! (4 1) ! 3 ! 3 2 1 2. Probabilidad 2.1 Definiciones El término probabilidad se encuentra con frecuencia en la comunicación entre las personas. Por ejemplo: 1) Alicia y Álvaro tienen un 27% de probabilidad de ganarse un viaje al extranjero. 2) Los alumnos del Colegio Ucevito tienen un 80% de probabilidad de ingresar a la universidad. En los ejemplos, se da una medida de la ocurrencia de una situación que es incierta (ganarse un viaje o ingresar a la universidad) y esta se expresa mediante un número. 2.1.1 Experimento Aleatorio Representa aquella situación en donde podemos conocer todas las posibilidades de resultados que ocurrirán, pero no cuál es el resultado exacto que va a ocurrir. 2. Probabilidad 2.1.2 Experimento Determinístico: . Representa aquella situación en las que podemos predecir su ocurrencia. Ejemplo 1: Al lanzar una moneda de curso legal que puede salir cara o sello. Ejemplo 2: Al dejar caer en “caída libre” un objeto en condiciones controladas. 2. Probabilidad 2.1.3 Espacio muestral Es el conjunto formado por todos los resultados posibles y razonables de un experimento aleatorio. Ejemplo 1: Al lanzar un dado de seis caras, el espacio muestral es : E = {1, 2, 3, 4, 5, 6} Ejemplo 2: ¿Cuántos elementos tiene el espacio muestral si se lanza una moneda y un dado de seis caras? Usamos el principio multiplicativo: Moneda: 2 posibilidades Dado: 6 posibilidades 2 · 6 = 12 elementos Cuando un experimento tiene a resultados y se repite n veces, el espacio muestral tiene an elementos. 2. Probabilidad 2.1.4 Evento o suceso Corresponde a un subconjunto del espacio muestral, determinado por una condición establecida. Ejemplo 1: Al lanzar dos monedas, que salgan sólo dos caras; el evento determinado es: A = Que salgan dos caras. Los sucesos se designan con letras mayúsculas. Ejemplo 2: En el lanzamiento de un dado, ¿cuántos elementos tiene el espacio muestral y cuántos el suceso “que salga un número par”? Espacio muestral : 6 elementos. Suceso B = que salga un número par : 3 elementos 2. Probabilidad 2.2 Probabilidad clásica Está íntimamente ligada al concepto de azar y ayuda a comprender las posibilidades de los resultados de un experimento. Intuitivamente podemos observar que cuanto más probable es que ocurra el evento, su medida de ocurrencia estará más próximo a “1” o al 100%, y cuando menos probable, más se aproximará a “0”. Si A representa un evento o suceso, se cumple que: 0 P(A) 1 o 0% P(A) 100% 2. Probabilidad 2.2.1 Regla de Laplace Una probabilidad se calcula utilizando la siguiente fórmula: P(A) = Casos favorables Casos posibles cardinalidad del evento o suceso. cardinalidad del espacio muestral. Ejemplo: Al lanzar un dado, ¿cuál es la probabilidad de obtener un número primo? Solución: El espacio muestral es E = {1, 2, 3, 4, 5, 6}, por lo tanto los casos posibles son 6. Sea el evento o suceso A=que salga un número primo, entonces A={2, 3, 5}, por lo tanto los casos favorables son 3. Luego: P(A) = 3 = 1 6 2 2. Probabilidad 2.2.2 Tipos de sucesos Suceso imposible Si se tiene certeza absoluta de que un evento A no ocurrirá: P(A) = 0 Ejemplo: La probabilidad de obtener un número mayor que 6 al lanzar un dado común es 0 (0 de 6). Casos posibles: 6 (1,2,3,4,5,6) Casos favorables: 0 P(mayor que 6) = 0 =0 6 2. Probabilidad 2.2.2 Tipos de sucesos Suceso seguro Si se tiene certeza absoluta de que un evento A ocurrirá: Ejemplo: P(A) = 1 La probabilidad de obtener un número natural al lanzar un dado común es 1 (6 de 6). Casos posibles: 6 (1, 2, 3, 4, 5, 6) Casos favorables: 6 (1, 2, 3, 4, 5, 6) P(natural) = 6 6 =1 2. Probabilidad 2.2.2 Tipos de sucesos Suceso contrario La probabilidad de que un suceso no ocurra o probabilidad de un suceso contrario, se obtiene a través de: P(A) = 1 – P(A) Ejemplo: 2 , ¿cuál es la probabilidad de que 5 Si la probabilidad de que llueva es no llueva? Solución: P(no llueva) = 1 – P(llueva) P(no llueva) = 1 – P(no llueva) = 3 5 2 5 2. Probabilidad 2.3 Ley de los grandes números Cuando todos los resultados de un experimento son equiprobables (tienen la misma probabilidad de ocurrir), se pueden establecer algunas conclusiones relacionando la probabilidad con la frecuencia absoluta de cada evento. Por ejemplo, Mariela lanzó un dado 100 veces y registró los resultados en la siguiente tabla: Nº Cantidad de veces que salió Frecuencia absoluta 1 15 0,15 2 17 0,17 3 20 0, 20 4 19 0,19 5 13 0,13 6 16 0,16 100 2. Probabilidad 2.3 Ley de los grandes números Luego, volvió a lanzar pero 1.000 veces el mismo dado y reflejó los datos en una nueva tabla: Nº Cantidad de veces que salió Frecuencia absoluta 1 158 0,158 2 161 0,161 3 168 0, 168 4 165 0,165 5 176 0,176 6 172 0,172 1.000 ¿Es posible establecer alguna relación entre las tablas y la probabilidad de que salga un 2? 2. Probabilidad 2.3 Ley de los grandes números La probabilidad de que salga un 2 al lanzar un dado es: P(2) = 1 , que es equivalente a decir P(2) = 0,16666… 6 En la primera tabla la frecuencia absoluta del número 2, es 0,17 En la segunda tabla la frecuencia absoluta del número 2, es 0,161 Nº Cantidad de veces que salió 2 17 100 Frecuencia absoluta 0,17 Nº Cantidad de veces que salió 2 161 Frecuencia absoluta 0,161 1.000 Si comparamos los resultados obtenidos con la probabilidad que salga el número 2, se puede concluir que a mayor cantidad de repeticiones del experimento, este siempre tenderá a la probabilidad calculada a priori. TRIÁNGULO DE PASCAL El triángulo de Pascal en matemática es un conjunto infinito de números enteros ordenados en forma de triángulo que expresan coeficientes binomiales. El interés del Triángulo de Pascal radica en su aplicación en álgebra y permite calcular de forma sencilla números combinatorios lo que sirve para aplicar el binomio de Newton. 1 1 1 1 1 1 2 3 4 1 3 6 1 4 1 Cada número es la suma de los dos números que están sobre él. En probabilidad el Triángulo de Pascal se utiliza como una técnica de conteo en la resolución de problemas de iteración de experimentos sencillos, cuando el objeto considerado tiene dos posibilidades, por ejemplo una moneda, sexo de un hijo por nacer, etc.. Ejemplo: Si se lanza una moneda una vez, los casos posibles son: una cara (C) o un sello (S), que está representado en la primera fila del Triángulo de Pascal: 11 El total de casos posibles es 2. Si se lanza una moneda dos veces, los casos posibles son: CC, CS, SC, SS, lo que implica que se tiene un caso en que aparecen dos caras, 2 casos distintos en que se obtiene una cara y un sello, y un caso en que se obtienen dos sellos, que está representado en la segunda fila del Triángulo de Pascal: 121 El total de casos posibles es 4. 3. PROBABILIDAD DE LA UNIÓN, PROBABILIDAD TOTAL y PROBABILIDAD DE LA INTERSECCIÓN DE EVENTOS La probabilidad de que ocurra el suceso A o el suceso B. 3.1 PROBABILIDAD DE LA UNIÓN: Caso : Cuando A y B son eventos mutuamente excluyentes está dada por: P(A U B) = P(A) + P(B) Ejemplo: Al lanzar un dado, ¿cuál es la probabilidad de que salga un número menor que 2 o mayor que 5? 1 Solución: P(<2) = 1 P(>5) = y 6 6 P(<2) o P(>5) = P(<2) U P(>5) = P(<2) + P(>5) 1 + 1 = 6 6 2 1 = = 6 3 3.2 PROBABILIDAD TOTAL Caso : De no ser mutuamente excluyentes: U P(A U B) = P(A) + P(B) – P(A B) Ejemplo: Al lanzar un dado, ¿cuál es la probabilidad de que salga un número menor que 5 o un número par? Solución: Casos posibles 6 {1,2,3,4,5,6} Casos favorables (menor que 5): 4 {1,2,3,4} P (menor que 5) = 4 6 Casos favorables (número par): 3 {2,4,6} P (número par) = 3 6 Como 2 y 4 son menores que 5 y al mismo tiempo son pares, se estarían considerando como casos favorables dos veces. Por lo tanto: La probabilidad de que salga un número menor que 5 o un número par, al lanzar un dado se expresa como: U P (< 5) o P(par) = P(<5) U P(par) – P(<5 par) = P(< 5) + P(par) – P(<5 y par) = = 4 6 5 6 + 3 – 2 6 6 La probabilidad de que ocurra el suceso A y el suceso B. 3.3 PROBABILIDAD DE LA INTERSECCIÓN: En este caso, ambos sucesos ocurren simultáneamente, A y B. Caso 1: Cuando A y B son eventos independientes, U P(A se cumple que: B ) = P(A) · P(B) Ejemplo: ¿Cuál es la probabilidad de que al lanzar dos veces un dado se obtengan dos números pares? Solución: Casos posibles: 6 (1,2,3,4,5,6) Casos favorables: 3 (2,4,6) Entonces: P(dos pares) = P(par) y P(par) = P(par) · P(par) = 3 6 · 3 6 = 1 4 Caso 2: Cuando A y B son eventos dependientes corresponde a la Probabilidad Condicionada. Corresponde a la probabilidad de B tomando como espacio muestral a A, es decir, la probabilidad de que ocurra B dado que ha sucedido A. P(A B) P(A) U P (B/A) = Ejemplo: Al lanzar un dado, ¿cuál es la probabilidad de obtener un 4 sabiendo que ha salido par? Solución: B: Sacar 4 A: Número par = { 2,4,6 } P (B/A) = 1 3 Probabilidad con reposición Ejemplo: Se tiene una bolsa con 30 peloticas entre blancas y rojas, de las cuales 12 son blancas, todas de igual peso y tamaño. Si se extraen 2 peloticas al azar, con reposición, ¿cuál es la probabilidad de que ambas sean blancas?. Solución: Primera extracción Segunda extracción (Con reposición) Casos posibles: 30 Casos posibles: 30 Casos favorables: 12 Casos favorables: 12 Entonces: P(dos blancas) = P(1ª blanca) y P(2ª blanca) = P(1ª blanca) x P(2ª blanca) = 12 12 x = 30 30 144 = 900 4 25 Probabilidad sin reposición. Ejemplo: Se tiene una bolsa con 30 peloticas entre blancas y rojas, de las cuales 12 son blancas, todas de igual peso y tamaño. Si se extraen 2 peloticas al azar, sin reposición, ¿cuál es la probabilidad de que ambas sean blancas?. Solución: Primera extracción Segunda extracción (Sin reposición) Casos posibles: 30 Casos posibles: 29 Casos favorables: 12 Casos favorables: 11 Entonces: P(dos blancas) = P(1ª blanca) y P(2ª blanca) = P(1ª blanca) x P(2ª blanca) = 12 30 x 11 29 = 132 870 = 22 145 4. Distribución de Probabilidad: Pregunta final: En una fila de 7 sillas se sientan cuatro mujeres y tres hombres, ¿de cuántas maneras se pueden sentar ordenadamente, si las mujeres deben estar juntas y los hombres también? A) B) C) D) E) 2 4·3 3!·4!·2 3!·4! 4·3·2