Download clase_20nucleicos_20i_20y_20ii_2015_10_1_
Document related concepts
Transcript
ÁCIDOS NUCLEICOS: polímeros de nucleótidos ADN ARN ácido desoxiribonucleico ácido ribonucleico ARN Nucleótido: Un hidrato de carbono: pentosa O= Acido fosfórico HO – P – OH =O Base nitrogenada ADN Estructura de los nucleótidos Nucleósido: azúcar + base nitrogenada Estructura primaria del ADN Polímero de nucleótidos enlazados mediante el grupo fosfato ENLACE FOSFODIESTER Unión entre el fosfato 3´de una base y el OH 5´ de la base siguiente Estructura secundaria del ADN: Doble hebra alfa hélice La doble hélice: Esqueleto: cadena de uniones azúcar-fosfato Direccionalidad: Las hebras son antiparalelas : una de ellas es 5'- 3' y la complementaria 3'- 5'. Complementariedad: Regla de Chargaff A=T G=C ¿Qué interacciones estabilizan la doble hebra? Uniones puente hidrógeno purina - pirimidina Interacciones hidrofóbicas entre los anillo de las bases nitrogenadas Interacciones fosfato – agua Conformaciones del ADN: Relacionadas con la conformación del azúcar y la orientación de la base respecto al azúcar Cada conformación tiene parámetros característicos: Z-ADN = 10 Numero de bases por vuelta 2 nm Diámetro de la hélice Perpendicular al eje de la hélice Distancia entre el plano de las bases Z-ADN Surco mayor y surco menor: Las uniones azúcar- base no están directamente opuetas entre una cadena y la otra ADN: empaquetado en el núcleo → cromatina: interaccion ADN – proteínas Nucleosoma: estructura fundamental de la cromatina Complejo ADN enrollado alrededor de proteínas básicas llamadas histonas Octámero + “collar de perlas”: 20- 200 nucleótidos separan a los nucleosomas Solenoide: cola regular que contiene 6- 8 nucleosomas por vuelta → fibras de 30nm Se reduce la longitud 50 veces . Cromosoma: molécula de ADN empaquetada con histonas Formado por dos cromátidas hermanas unidas por el centrómero, Genoma Humano: 3 x 109 pares de nucleótidos Elementos de un cromosoma: Centrómero DosTelómeros Orígenes de replicación ADN repetitivo Genoma: información genética de un organismo almacenada en los cromosomas Los organismos diploides contienen un par de cada cromosoma Las células humanas tienen 46 cromosomas (23 pares), uno heredado de cada padre 22 autosomas y 2 posibles cromosomas sexuales: X e Y Acrocéntrico telocéntrico submetacéntrico metacéntrico Entre las funciones y propiedades del ADN: Lleva la información genética de la célula: los genes son responsables de las características estructurales y de la transmisión de estas características de una célula a otra. Se duplica durante la división celular para formar dos moléculas idénticas, para lo cual necesita que en el núcleo existan nucleótidos, energía y enzimas. Controla la actividad de la célula. Capacidad de mutación importante para los cambios evolutivos ESTRUCTURA DE UN GEN Promotores Exones Sitio de inicio de la Transcripción Intrones Realzadores Sitio de terminación de la Transcripción Dogma central de la biología ARN: polímero de nucleótidos de hebra simple CLASES DE ARN ARNm (ARN mensajero) ARNr (ARN ribosomal) ARNt (ARN de transferencia) ÁCIDOS NUCLEICOS: polímeros de nucleótidos ADN ARN ácido desoxiribonucleico ácido ribonucleico DUPLICACION DEL ADN Precisa Complejo multienzimático Duplicación Rápida Complementaria Síntesis Semiconservativa Reacción: adición de un nucleótido al extremo 3´de una hebra de ADN catalizada por la enzima ADN polimerasa Nucleótidos: ATP GTP TTP CTP Energía para la reacción: hidrólisis del fosfato Formación del enlace fosfodiéster : transferencia de un grupo fosfato al extremo 3′ de la cadena que está en crecimiento → se libera pirofosfato inorgánico (PPi) y se alarga la cadena. . complementariedad del nucleótido adicionado con el del molde La replicación es asimétrica Solo la síntesis 5´→3´ es posible ¿Como se copia la hebra 5´→3´ ? Fragmentos de OKASAKI: 100-200 nucleótidos en eucariotas Se sintetizan en sentido 5´→3´ y luego se unen por la enzima ADN ligasa Horquilla de replicación de ADN: forma en Y Origen de replicación: puntos fijos a partir de los cuales comienza la duplicación Avanza en ambos sentidos Fases de la replicación: Iniciación: Reconocimiento del Origen de replicación por proteínas iniciadoras Desnaturalización del ADN y Reclutamiento del resto de las proteínas: REPLISOMA Formación de la horquilla de replicación, síntesis del cebador Elongación Sintesis bidireccional de nuevas cadenas por las ADN polimerasas, añadiendo nucleótidos basados en el molde. En la hebra rezagada, cuando la ADN polimerasas contacta otro Fragmento de Okasaki, se elimina el cebador de ARN y unión por la enzima ligasa. Terminación Una vez se han juntado todos los fragmentos de Okasaki se completa la doble hélice de ADN Proteínas que participan de la horquilla de replicación ADN primasa ADN helicasa: desenrolla o separa las dos hebras. Topoisomerasa: induce superenrrollamientos negativos Proteínas que se unen al ADN de simple hebra ADN polimerasa: se une al ADN, cataliza la elongación de la hebra líder y la retrasada, y chequea la seguridad de la copia ARN primasa: sintetiza primers ARN para copias la hebra retardada para sintetizar los fragmentos de Okazaki. ADN ligasa une los fragmentos de Okasaki ADN polimerasa I: remueve los primers de ARN y completa la hebra ADN polimerasa, durante el proceso de replicación: Elongación de la cadena → polimerasa Corrección y reparación de errores → exonucleasa Impide que se acumulen errores → mutaciones. Fidelidad de la síntesis: ocurre un error cada 3 x 109 bases incorporadas Apareamiento: 1 error cada 10.000 pares de bases Fidelidad de la síntesis: ocurre un error cada 3 x 109 bases incorporadas Reparación de las bases mal apareadas a medida que las va polimerizando Monitorea el ADN buscando alteraciones ambientales (UV, Rayos-X, carcinogenos, mutagenos). Ej: TT, producidos radiación UV DUPLICACION DEL ADN Todos los organismos duplican su material genético antes de cada división celular → cada célula hija igual informacion genética ¿En que momento? Ciclo celular El proceso llevaría 1mes ¿Cómo logra replicarse en la fase S?→ varios orígenes de replicación Burbuja de replicacion: progresa en ambas direcciones TRANSCRIPCION ADN → ARN Antiparalela - complementaria ARN polimerasa: sintetiza una cadena de RNA en dirección 5´→ 3´ a partir de los precursores ribonucleósidos trisfosfatos Unidad de transcripción: Un promotor: hacia el extremo 5´ La secuencia codificadora La secuencia terminadora. Producto: ARN heterogéneo nuclear (ARNhn) o transcripto primario (inestable)→ contiene la secuencia codificadora y el terminador y no ha sufrido modificaciones. Reconocimiento del promotor: ARN polimerasa únicamente: promotores fuertes → promotores procariotas Con participación de proteínas adicionales: promotores débiles → promotores eucariotas: factores de trascripción → promotores procariotas: activadores Etapas de la transcripción: Reconocimiento: Unión de la enzima y factores de transcripción al promotor y exposición de la cadena molde. Unión de proteínas. Síntesis de los primeros nueve enlaces. (luego la enzima abandona el promotor) La enzima se desplaza, desenrolla la doble hélice y extiende la cadena de RNA Híbrido ADN-ARN : ~25 nucleótidos. Reconocimiento de la secuencia terminadora. Se añade la última base y colapsa la burbuja de transcripción al desaparecer el híbrido DNA-RNA. Lugar de síntesis: burbuja de transcripción → se desplaza por el ADN junto con la ARN polimerasa a medida que va sintetizándose el ARN ARN polimerasa Carácterísticas individuales: Lugares específicos del núcleo Reconocimiento de promotores con características específicas Requerimiento en número y tipo de factor de trascripción Factores de transcripción: Factores generales: son los requeridos para los mecanismos de inicio de la síntesis del RNA en todos los promotores. Factores 5´ o corriente arriba: reconocen secuencias cortas específicas situados en dirección 5´ del inicio. Actúan sobre cualquier promotor que contenga el sitio de unión apropiado. Aumentan la eficiencia de la iniciación y se requieren para que un promotor funcione a un nivel adecuado. Genes constitutivos: promotores reconocibles por factores generales y factores 5´ Factores inducibles: papel regulador → se sintetizan o activan en momentos específicos → controlan la transcripción Promotores Promotor basal o mínimo: determinan el punto de inicio de la transcripción. Son reconocidos por factores generales Inr y la caja TATA (posicionamiento de la RNA polimerasa II). Secuencias reconocidas por los factores corriente arriba: caja CAAT, caja GC y el octámero. Su función es aumentar la eficiencia del evento de iniciación. El número y posición de estos elementos es variable entre los promotores. Los enhancers (potenciadores). Estos elementos aunque no forman parte del promotor propiamente dicho regulan la función del mismo y son reconocidos también por los factores corriente arriba. Pueden estar muy distantes del promotor, tener varias ubicaciones con respecto al mismo, incluso pueden estar dentro de la unidad de transcripción. MODIFICACIONES EN EL EXTREMO 5’ TERMINAL Adición de residuo G después de iniciada la trascripción Metilación MODIFICACIONES EN EL EXTREMO 3’ TERMINAL Adición de cola poli A: señal de poliadenilación AAUAAA Funciones de la cola de PoliA confiere estabilidad al RNAm. relacionada con el proceso de traducción. Splicing: eliminacion de intrones + unión de exones Límites intrón-exón: puntos de rutura y reunión o puntos de splicing. Los extremos de los intrones tienen cortas secuencias conservadas: Intrón genérico: 5´GT……AG3´ → direccionalidad Spliceosoma: complejo de ribonucleoproteínas nucleares (snRNP) reconocen los sitios 3´ y 5´ y la secuencia ramificadora Procesamiento del tRNA TRADUCCION ARN → PROTEINA INICIACION: la subunidad menor se une al ARNm y a ARNt iniciador. Luego se une la subunidad mayor. Factores de iniciación: proteínas que mantienen juntos estos componentes ELONGACION: ARNt se ubica en sitio A por complementariedad (anticodon) Uniones tipo Puente de H estabilizan la interaccion. Formación del enlace peptídico y clivaje de la unión ARNt – péptido en el sitio P TRANSLOCACION El ciclo se repite hasta encontrar un codón de terminación TERMINACION: se unen factores de liberación al codón, se une agua en vez de AA Se libera la cadena polipeptídica El complejo se desensambla Un ARNm une varios complejos ribosomales, formando varias proteínas nacientes ¿Qué sucede con el ARNm? Finalmente se degrada en el citoplasma Código genético: relación entre la secuencia de nucleótidos y la secuencia de aminoácidos de la proteína. Unidad codificadora: grupo de tres nucleótidos (triplete). Cuando están en el ARN mensajero se les llama codones Unión codón - anticodón → unión triplete del ARNm – triplete del ARNt complementaria Cada ARNt porta el aminoácido correspondiente al codón de acuerdo con el código genético → el ribosoma une AA para formar una nueva proteína de acuerdo con las “instrucciones” de la secuencia del ARNm. Existen 64 codones posibles: más de uno para cada aminoácido Codones de terminación o sin sentido: fin de la secuencia codificante: son UAA, UGA y UAG Código Genético 64 codones o tripletes de bases 61 codones codifican aminoácidos. 3 codones funcionan como señales de terminación. No es ambiguo: cada codón especifica a un solo aminoácido. Es degenerado: un aminoácido puede estar codificado por diferentes codones. Es universal: interpretado de la misma forma por todos los organismos. Utiliza un marco de lectura establecido al inicio de la traducción y no lo modifica. No se produce solapamiento de codones. AUG: codón de iniciación → Met → primer aminoácido, frecuentemente se elimina al final del proceso. Secuencias de ADN no codificantes: Centromeros y telómeros: estabilizan la estructura de los cromosomas. Secuencias para ARN: Pseudogenes que tienen valor evolutivo ya que permiten la creación de nuevos genes con nuevas funciones Otros proceden de la duplicación de pequeñas regiones del ADN. El rastreo de estas secuencias repetitivas permite estudios sobre el linaje humano. La estructura de intrones y exones de algunos genes (como los de inmunoglobulinas y protocadherinas) son importantes por permitir cortes y empalmes alternativos del pre-ARN mensajero que hacen posible la síntesis de diferentes proteínas a partir de un mismo gen (sin esta capacidad no existiría el sistema inmunológico). Regulación de la expresión Mutaciones: Es cualquier cambio o alteración en el material cromosómico de las células. en los gametos: generará enfermedades hereditarias. en células somáticas: causan enfermedades no hereditarias. Pueden ser: Mutaciones silenciosas: no se altera el AA Mutaciones sin sentido: causa terminación de la transcripción Mutaciones con cambio de sentido: cambia un AA por otro Mutaciones que causan cambio de marco de lectura: deleciones / inserciones TIPOS DE ABERRACIONES CROMOSÓMICAS Cambio en la estructura del cromosoma Delecciones: se pierde un segmento del cromosoma. Duplicaciones: se duplica un segmento del cromosoma. Inversiones: Se produce una inversión o giro de 180° en varios segmentos del cromosoma,. Translocaciones : ocurren cuando hay cambios de segmentos entre dos cromosomas, Cambio en el número de Cromosomas Aneuploidía: disminuye o aumenta el número de cromosomas Monosómico: falta 1 cromosoma Trisómico: un cromosoma de mas