Download Comp-Fisica-I-BII
Document related concepts
Transcript
1 FÍSICA I FÍSICAI (Prontuario de actividades de aprendizaje; conceptos y ejercicios, bloque II) 1 ~2~ DISTRIBUCIÓN DE BLOQUES El programa de Física I, está conformado por cuatro bloques (pregúntale a tu profesor sobre los periodos en las fechas de cada uno de estos temas. BLOQUE II IDENTIFICAS ENTRE DISTINTOS TIPOS DE MOVIMIENTO En el bloque II, el o la docente promueve en el alumnado desempeños que le permiten emplear y aplicar la importancia de la cinemática, en el contexto natural y su relación con la aplicación y naturaleza de las fuerzas involucradas las cuales generan el movimiento de los cuerpos, haciendo énfasis en la comprobación experimental de los diferentes tipos de movimiento. 2 ~3~ ~4~ Bloque Nombre del Bloque II Tiempo asignado IDENTIFICAS DIFERENCIAS ENTRE DISTINTOS TIPOS DE MOVIMIENTO 20 horas Desempeños del estudiante al concluir el bloque Define conceptos básicos relacionados con el movimiento. Identifica las características del movimiento de los cuerpos en una y dos dimensiones. Reconoce y describe, en base a sus características, diferencias entre cada tipo de movimiento. Objetos de aprendizaje Competencias a desarrollar 6) Nociones básicas sobre Podrás identificar problemas, formulando preguntas de carácter científico y planteando las hipótesis necesarias parar exponerlas; obteniendo y registrando la información para responder a las preguntas de carácter científico. movimiento. 7) Movimiento en una dimensión. 8) Movimiento en dos dimensiones. Podrás realizar experimentos o desarrollar proyectos en equipo aportando tus puntos de vista con una apertura de manera reflexiva ~ 20 ~ 6).- Nociones Básicas sobre movimiento.No existe ningún cuerpo real completamente libre de la acción de fuerzas externas. Levantar un lápiz, encender un cerillo, agitar el café, dar un puntapié a una pelota, apagar una luz, clavar un clavo, escribir, son acciones que se realizan con intervención de las fuerzas. Las fuerzas producen múltiples efectos en los cuerpos sobre los que actúan: movimientos, deformaciones, roturas, choques e incluso el reposo. La diaria observación nos permite decir que conocemos la fuerza intuitivamente. Una fuerza no es un cuerpo material que podamos tocar, ver u oír, pero es fácil percatarse de sus efectos. Se entiende mucho mejor qué son las fuerzas, investigando cuál es el efecto de éstas: Cambian la forma de un cuerpo: • • • • • • • Comprimen los cuerpos Pueden estirar los cuerpos Cambian el movimiento de un cuerpo: Las fuerzas que ponen en movimiento un cuerpo a partir del reposo. Hacen que un cuerpo en movimiento se mueva más rápido. En algunos casos retardan el movimiento. En otros, llevan al reposo a un cuerpo que está en movimiento . También equilibran otra fuerza de igual magnitud pero de sentido contrario. Supongamos que dos muchachos jalan con una cuerda cada uno los extremos de un carrito, de tal manera que ninguno de los dos logra moverlo. Esto significa que las fuerzas que ejercen sobre el carrito son de igual magnitud, pero de sentido opuesto, por tanto, se equilibran entre sí. Movimiento (física) Para otros usos de este término, véase Movimiento. El movimiento es un cambio de posición respecto del tiempo medido por un cierto observador. En mecánica, el movimiento es un cambio de posición en el espacio de algún tipo de materia de acuerdo con un observador físico. 20 ~ 21 ~ La descripción y estudio del movimiento de un cuerpo exige determinar su posición en el espacio en función del tiempo respecto a un cierto sistema de referencia. Dado el carácter relativo del movimiento, este no puede ser definido como un cambio físico, ya que un observador inmóvil respecto a un cuerpo no percibirá movimiento alguno, mientras que un segundo observador respecto al primero percibirá movimiento del cuerpo. Estudios del movimiento El gran filósofo griego Aristóteles (384 a. C. – 322 a. C.) propuso explicaciones sobre lo que ocurría en la naturaleza, considerando las observaciones que hacía de las experiencias cotidianas y su razonamiento, aunque no se preocupaba por comprobar sus afirmaciones. Aristóteles formuló su teoría sobre la caída de los cuerpos afirmando que los más pesados caían más rápido que los más ligeros, es decir entre más peso tengan los cuerpos más rápido caen. Esta teoría fue aceptada por casi dos mil años hasta que en el siglo XVII Galileo realiza un estudio más cuidadoso sobre el movimiento de los cuerpos y su caída, sobre la cual afirmaba: "cualquier velocidad, una vez impartida a un cuerpo se mantendrá constantemente, en tanto no existan causas de aceleración o retardamiento, fenómeno que se observará en planos horizontales donde la fricción se haya reducido al mínimo" Esta afirmación lleva consigo el principio de la inercia de Galileo la cuál brevemente dice: "Si no se ejerce ninguna fuerza sobre un cuerpo, éste permanecerá en reposo o se moverá en línea recta con velocidad constante" . Él fue estudiando los movimientos de diversos objetos en un plano inclinado y observó que en el caso de planos con pendiente descendente a una causa de aceleración, mientras que en los planos con pendiente ascendente hay una causa de retardamiento. De esta experiencia razonó que cuando las pendientes de los planos no son descendentes ni ascendentes no debe haber aceleración ni retardamiento por lo que llegó a la conclusión de que cuando el movimiento es a lo largo de un plano horizontal debe ser permanente. Galileo hizo un estudio para comprobar lo que había dicho Aristóteles acerca de la caída de los cuerpos, para hacerlo se subió a lo más alto de la torre de Pisa y soltó dos objetos de distinto peso; y observó que los cuerpos caen a la misma velocidad sin importar su peso, quedando así descartada la teoría de la caída de los cuerpos de Aristóteles. 21 ~ 22 ~ Cinemática . La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose, esencialmente, al estudio de la trayectoria en función del tiempo. En la Cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia. La velocidad es el ritmo con que cambia la posición un cuerpo. La aceleración es el ritmo con que cambia su velocidad. La velocidad y la aceleración son las dos principales cantidades que describen cómo cambia su posición en función del tiempo. El estudio de la cinemática usualmente empieza con la consideración de casos particulares de movimiento con características particulares. Usualmente se empieza el estudio cinemático considerando el movimiento de una partícula o cuerpo cuya estructura y propiedades internas pueden ignorarse para explicar su movimiento global. Entre los movimientos que puede ejecutar una partícula material libre son particularmente interesantes los siguientes: • Movimiento rectilíneo uniforme (MRU). Un movimiento es rectilíneo cuando describe una trayectoria recta. (por ejemplo un carro en la carretera en línea recta a 100 km/hr; es decir llevando una velocidad constante) 22 ~ 23 ~ • Movimiento rectilíneo uniformemente acelerado (MRUA) es aquél en el que un cuerpo se desplaza sobre una recta con aceleración constante (por ejemplo los carros de cuarto de milla en los arrancones, los cuales están sujetos a la aceleración que les da el motor). Esto implica que en cualquier intervalo de tiempo, la aceleración del cuerpo tendrá siempre el mismo valor. (Otro ejemplo es la caída libre de un cuerpo, con aceleración de la gravedad constante.) 23 ~ 24 ~ • Movimiento circular. El movimiento circular es el que se basa en un eje de giro y radio constante: la trayectoria será una circunferencia. Si, además, la velocidad de giro es constante, se produce el movimiento circular uniforme, que es un caso particular de movimiento circular, con radio fijo y velocidad angular referente. En este caso la velocidad vectorial no es constante, aunque sí puede ser constante la celeridad (o módulo de la velocidad). (por ejemplo las aspas de un abanico cuando se enciende, giraran a una velocidad constante alrededor de su motor) El movimiento circular del piñón se transforma en movimiento lineal en la cremallera. 24 • ~ 25 ~ Movimiento armónico simple, que es un tipo de movimiento oscilatorio ejecutado por una partícula a partir de un centro o punto de equilibrio. (Por ejemplo, es el caso de un cuerpo colgado de un muelle oscilando arriba y abajo. El objeto oscila alrededor de la posición de equilibrio cuando se le separa de ella y se le deja en libertad. En este caso el cuerpo sube y baja.) (posicionar el mouse sobre el dibujo, darle click con el botón derecho y abrir hipervínculo) 25 • ~ 26 ~ Movimiento parabólico. Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. En mecánica clásica se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme. También es posible demostrar que puede ser analizado como la composición de dos movimientos rectilíneos, un movimiento rectilíneo uniforme horizontal y movimiento rectilíneo uniformemente acelerado vertical. 26 ~ 27 ~ • Movimiento pendular. El movimiento pendular es una forma de desplazamiento que presentan algunos sistemas físicos como aplicación práctica de movimiento cuasi-armónico. Existen diversas variantes de movimiento pendular: péndulo simple, péndulo de torsión y péndulo físico. • Los tres primeros son de interés tanto en mecánica clásica, como en mecánica relativista y mecánica cuántica. Mientras que el movimiento parabólico y el movimiento pendular son de interés casi exclusivamente en la mecánica clásica. El movimiento armónico simple también es interesante en mecánica cuántica para aproximar ciertas propiedades de los sólidos a nivel atómico.) (posicionar el mouse sobre el dibujo, darle click con el botón derecho y abrir hipervínculo) 27 Movimiento armónico simple. ~ 28 ~ (Posicionar el mouse sobre el dibujo, darle click con el botón derecho y abrir hipervínculo) Las ondas pueden ser representadas por un movimiento armónico simple. Movimiento giroscópico.] De acuerdo con la mecánica del sólido rígido, además de la rotación alrededor de su eje de simetría, un giróscopo presenta en general dos movimientos principales: la precesión y la nutación. En un giroscopio debemos tener en cuenta que el cambio en el momento angular de la rueda debe darse en la dirección del momento de la fuerza que actúa sobre la rueda. El giróscopo o giroscopio es un dispositivo mecánico que sirve para medir, mantener o cambiar la orientación en el espacio de algún aparato o vehículo. Para ver el giróscopo moverse, entra a la liga http://upload.wikimedia.org/wikipedia/commons/2/26/Gyroscope_wheel_animation.gif 28 Características del movimiento] ~ 29 ~ La descripción del movimiento de partículas puntuales o corpúsculos (cuya estructura interna no se requiere para describir la posición general de la partícula) es similar en mecánica clásica y mecánica relativista. En ambas el movimiento es una curva parametrizada por un parámetro escalar. En la descripción de la mecánica clásica el parámetro es el tiempo universal, mientras que en relatividad se usa el intervalo relativista ya que el tiempo propio percibido por la partícula y el tiempo medido por diferentes observadores no coincide. La descripción cuántica del movimiento es más compleja ya que realmente la descripción cuántica del movimiento no asume necesariamente que las partículas sigan una trayectoria de tipo clásico (algunas interpretaciones de la mecánica cuántica sí asumen que exista una trayectoria única, pero otras formulaciones prescinden por completo del concepto de trayectoria), por lo que en esas formulaciones no tiene sentido hablar ni de posición, ni de velocidad. Sin embargo, todas las teorías físicas del movimiento atribuyen al movimiento una serie de características o atributos físicos como: • Posición • La cantidad de movimiento lineal • La cantidad de movimiento angular • La fuerza existente sobre la partícula 7).- Movimiento en una sola dimensión.Antes de analizar el Movimiento en Una Sola Dimensión, definiremos el concepto de Cinemática. La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose, esencialmente, al estudio de la trayectoria en función del tiempo. En la Cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia. La velocidad es el ritmo con que cambia la posición Habiendo definido el concepto de cinematica, dividiremos el movimiento en una sola dimensión como Movimiento Rectilíneo Uniforme (MRU, mantiene velocidad constante) o como Movimiento Rectilíneo Uniformemente Acelerado (MRUA, la velocidad varia); Este ultimo (MRUA) puede definirse como caída libre o subida vertical. 29 Movimiento rectilíneo uniforme (MRU) ~ 30 ~ El movimiento rectilíneo uniforme (MRU) fue definido, por primera vez, por Galileo en los siguientes términos: "Por movimiento igual o uniforme entiendo aquél en el que los espacios recorridos por un móvil en tiempos iguales, tómense como se tomen, resultan iguales entre sí", o, dicho de otro modo, es un movimiento de velocidad v constante. El MRU se caracteriza por: a) Movimiento que se realiza en una sola dirección en el eje horizontal. b) Velocidad constante; implica magnitud, sentido y dirección inalterables. c) La magnitud de la velocidad recibe el nombre de rapidez. Este movimiento no presenta aceleración (aceleración = 0). Concepto de rapidez y de velocidad Muy fáciles de confundir, son usados a menudo como equivalentes para referirse a uno u otro. Pero la rapidez (r) representa un valor numérico, una magnitud; por ejemplo, 30 km/h. En cambio la velocidad representa un vector que incluye un valor numérico (30 Km/h) y que además posee un sentido y una dirección. Cuando hablemos de rapidez habrá dos elementos muy importantes que considerar: la distancia (d) y el tiempo (t), íntimamente relacionados. Así: Si dos móviles demoran el mismo tiempo en recorrer distancias distintas, tiene mayor rapidez aquel que recorre la mayor de ellas. Si dos móviles recorren la misma distancia en tiempos distintos, tiene mayor rapidez aquel que lo hace en menor tiempo. Rapidez fantástica. Significado físico de la rapidez La rapidez se calcula o se expresa en relación a la distancia recorrida en cierta unidad de tiempo y su fórmula general es la siguiente: 30 ~ 31 ~ Donde v = rapidez d = distancia o desplazamiento tiempo t= Usamos v para representar la rapidez, la cual es igual al cociente entre la distancia (d) recorrida y el tiempo (t) empleado para hacerlo. Como corolario, la distancia estará dada por la fórmula: Según esta, la distancia recorrida por un móvil se obtiene de multiplicar su rapidez por el tiempo empleado. A su vez, si se quiere calcular el tiempo empleado en recorrer cierta distancia usamos El tiempo está dado por el cociente entre la distancia recorrida y la rapidez con que se hace. 31 ~ 32 ~ En este ejemplo, el móvil recorre 8 metros cada 2 segundos y se mantiene constante. Problemas o ejercicios sobre el movimiento rectilíneo uniforme: Ejercicio 1 Un automóvil se desplaza con una rapidez de 30 m por segundo, con movimiento rectilíneo uniforme. Calcule la distancia que recorrerá en 12 segundos. Analicemos los datos que nos dan: 32 ~ 33 ~ Apliquemos la fórmula conocida: y reemplacemos con los datos conocidos: ¿Qué hicimos? Para calcular la distancia (d), valor desconocido, multiplicamos la rapidez (v) por el tiempo (t), simplificamos la unidad segundos y nos queda el resultado final en metros recorridos en 12 segundos: 360 metros 33 Ejercicio 2 ~ 34 ~ El automóvil de la figura se desplaza con movimiento rectilíneo uniforme ¿cuánto demorará en recorrer 258 kilómetros si se mueve con una rapidez de 86 kilómetros por hora? Analicemos los datos que nos dan: Apliquemos la fórmula conocida para calcular el tiempo: y reemplacemos con los datos que tenemos: ¿Qué hicimos? Para calcular el tiempo (t), valor desconocido, dividimos la distancia (d) por la rapidez (v), simplificamos la unidad kilómetros y nos queda el resultado final en horas: 3 horas para recorrer 258 km con una rapidez de 86 km a la hora. 34 ~ 35 ~ Ejercicio 3 ¿Con qué rapidez se desplaza un móvil que recorre 774 metros en 59 segundos? Analicemos los datos conocidos: Aplicamos la fórmula conocida para calcular la rapidez: ¿Qué hicimos? Para calcular la rapidez (v), valor desconocido, dividimos la distancia (d) por el tiempo (t), y nos queda el resultado final: la rapidez del móvil para recorrer 774 metros en 59 segundos: 13,11 metros por segundo. Ejercicio 4 35 ~ 36 ~ Los dos automóviles de la figura parten desde un mismo punto, con movimiento rectilíneo uniforme. El amarillo (móvil A) se desplaza hacia el norte a 90 km por hora, y el rojo (móvil B), hacia el sur a 80 km por hora. Calcular la distancia que los separa al cabo de 2 horas. Veamos los datos que tenemos: Para el móvil A: Para el móvil B: Calculamos la distancia que recorre el móvil A: Calculamos la distancia que recorre el móvil B: 36 ~ 37 ~ Sumamos ambas distancias y nos da 340 km como la distancia que separa a ambos automóviles luego de 2 horas de marcha Ejercicio 5 El corredor de la figura trota de un extremo a otro de la pista en línea recta 300 m en 2,5 min., luego se devuelve y trota 100 m hacia el punto de partida en otro minuto. Preguntas: ¿Cuál es la rapidez promedio del atleta al recorrer ambas distancias? ¿Cuál es la rapidez media del atleta al recorrer los 400 metros? Veamos los datos que tenemos: Para el primer tramo: Calculamos su rapidez: Para el segundo tramo: 37 ~ 38 ~ Calculamos su rapidez: Rapidez promedio: La rapidez promedio del atleta fue de 110 metros por minuto. Veamos ahora cuál fue la velocidad media (v m ) para recorrer los 400 metros: La rapidez media del atleta fue de 114,29 metros por minuto. Movimiento rectilíneo uniformemente acelerado (MRUA) Ya vimos que el movimiento rectilíneo puede expresarse o presentarse como Movimiento rectilíneo uniforme, O como Movimiento rectilíneo uniformemente acelerado. Este último puede, a su vez, presentarse como de caída libre o de subida o tiro vertical. El movimiento rectilíneo uniformemente acelerado es un tipo de movimiento frecuente en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en el vacío desde lo alto de un edificio son cuerpos que se mueven ganando velocidad con el tiempo de un modo aproximadamente uniforme; es decir, con una aceleración constante. Un móvil puede ser acelerado. 38 ~ 39 ~ Este es el significado del movimiento uniformemente acelerado, el cual “en tiempos iguales, adquiere iguales incrementos de rapidez”. En este tipo de movimiento sobre la partícula u objeto actúa una fuerza que puede ser externa o interna. En este movimiento la velocidad es variable, nunca permanece constante; lo que si es constante es la aceleración. Entenderemos como aceleración la variación de la velocidad con respecto al tiempo. Pudiendo ser este cambio en la magnitud (rapidez), en la dirección o en ambos. Las variables que entran en juego (con sus respectivas unidades de medida) al estudiar este tipo de movimiento son: Velocidad inicial Vo (m/s) Velocidad final Vf (m/s) Aceleración a (m/s2) Tiempo t (s) Distancia d (m) Para efectuar cálculos que permitan resolver problemas usaremos las siguientes fórmulas: Consejos o datos para resolver problemas: La primera condición será obtener los valores numéricos de tres de las cinco variables. Definir la ecuación que refleje esas tres variables. Despejar y resolver numéricamente la variable desconocida. 39 Tener cuidado con que en algunas ocasiones un dato puede venir disfrazado; por ejemplo: ~ 40 ~ "un móvil que parte del reposo.....", significa que su velocidad inicial es Vo = 0 ; "en una prueba de frenado...", significa que su velocidad final es Vf = 0. Veamos un problema como ejemplo En dirección hacia el sur, un tren viaja inicialmente a 16m/s; si recibe una aceleración constante de 2 m/s2. ¿Qué tan lejos llegará al cabo de 20 s.? ¿Cuál será su velocidad final en el mismo tiempo? Veamos los datos que tenemos: Conocemos tres de las cinco variables, entonces, apliquemos las fórmulas: Averigüemos primero la distancia que recorrerá durante los 20 segundos: Conozcamos ahora la velocidad final del tren, transcurridos los 20 segundos: 40 ~ 41 ~ Respuestas: Si nuestro tren, que viaja a 16 m/s, es acelerado a 2 m/s recorrerá 720 metros durante 20 segundos y alcanzará una velocidad de 56 m/s. Movimiento rectilíneo uniformemente retardado En los movimientos uniformemente decelerados o retardados la velocidad disminuye con el tiempo a ritmo constante. Están, pues, dotados de una aceleración que aunque negativa es constante. De ahí que todas las fórmulas usadas para los movimientos uniformemente acelerados sirvan para describir los movimientos uniformemente retardados, considerando sólo que su signo es negativo. Por lo tanto, para efectuar cálculos que permitan resolver problemas que involucren aceleración negativa o deceleración, usaremos las siguientes fórmulas: Movimiento de caída libre 41 ~ 42 ~ El movimiento de los cuerpos en caída libre (por la acción de su propio peso) es una forma de rectilíneo uniformemente acelerado. La distancia recorrida (d) se mide sobre la vertical y corresponde, por tanto, a una altura que se representa por la letra h. En el vacío el movimiento de caída es de aceleración constante, siendo dicha aceleración la misma para todos los cuerpos, independientemente de cuales sean su forma y su peso. La presencia de aire frena ese movimiento de caída y la aceleración pasa a depender entonces de la forma del cuerpo. No obstante, para cuerpos aproximadamente esféricos, la influencia del medio sobre el movimiento puede despreciarse y tratarse, en una primera aproximación, como si fuera de caída libre. La aceleración en los movimientos de caída libre, conocida como aceleración de la gravedad, se representa por la letra g y toma un valor aproximado de 9,81 m/s2 (algunos usan solo el valor 9,8 o redondean en 10). Si el movimiento considerado es de descenso o de caída, el valor de g resulta positivo como corresponde a una auténtica aceleración. Si, por el contrario, es de ascenso en vertical el valor de g se considera negativo, pues se trata, en tal caso, de un movimiento decelerado. Torre de experimentación para caída libre de cierta cantidad de átomos, en Bremen, Alemania. Para resolver problemas con movimiento de caída libre utilizamos las siguientes fórmulas: 42 ~ 43 ~ Algunos datos o consejos para resolver problemas de caída libre: Recuerda que cuando se informa que “Un objeto se deja caer” la velocidad inicial será siempre igual a cero (v0 = 0). En cambio, cuando se informa que “un objeto se lanza” la velocidad inicial será siempre diferente a cero (vo ≠ 0). Desarrollemos un problema para ejercitarnos Gota de agua en caída libre. Desde la parte alta de este moderno edificio se deja caer una pelota, si tarda 3 segundos en llegar al piso ¿cuál es la altura del edificio? ¿Con qué velocidad impacta contra el piso? Veamos los datos de que disponemos: Desde lo alto dejamos caer una pelota. Para conocer la velocidad final (vf), apliquemos la fórmula 43 ~ 44 ~ Ahora, para conocer la altura (h) del edificio, aplicamos la fórmula: Respuestas: La pelota se deja caer desde una altura de 44,15 metros e impacta en el suelo con una velocidad de 29,43 metros por segundo. 44 ~ 45 ~ Movimiento de subida o de tiro vertical Al igual que la caída libre, este es un movimiento uniformemente acelerado. Tal como la caída libre, es un movimiento sujeto a la aceleración de la gravedad (g), sólo que ahora la aceleración se opone al movimiento inicial del objeto. A diferencia de la caída libre, que opera solo de bajada, el tiro vertical comprende subida y bajada de los cuerpos u objetos y posee las siguientes características: - La velocidad inicial siempre es diferente a cero. - Mientras el objeto sube, el signo de su velocidad (V) es positivo. - Su velocidad es cero cuando el objeto alcanza su altura máxima. - Cuando comienza a descender, su velocidad será negativa. - Si el objeto tarda, por ejemplo, 2 s en alcanzar su altura máxima, tardará 2 s en regresar a la posición original, por lo tanto el tiempo que permaneció en el aire el objeto es 4 s. - Para la misma posición del lanzamiento la velocidad de subida es igual a la velocidad de bajada. Para resolver problemas con movimiento de subida o tiro vertical utilizamos las siguientes fórmulas: 45 ~ 46 ~ Para ejercitarnos, resolvamos lo siguiente: Se lanza verticalmente hacia arriba una pelota con una velocidad inicial de 30 m/s, calcular: a) Tiempo que tarda en alcanzar su altura máxima. b) Altura máxima. c) Posición y velocidad de la pelota a los 2 s de haberse lanzado. d) Velocidad y posición de la pelota a los 5 s de haber sido lanzada. e) Tiempo que la pelota estuvo en el aire desde que se lanza hasta que retorna a tierra. Veamos los datos que tenemos: 46 ~ 47 ~ Para conocer el tiempo que demora la pelota en llegar a velocidad cero (altura máxima) utilizamos la fórmula La pelota llega a la altura máxima a los 3,06 segundos y como el tiempo de bajada es igual al de subida, este se multiplica por dos para conocer el tiempo total que permanece en el aire (6,12 segundos). Ahora vamos a calcular la altura máxima, la que alcanza cuando su velocidad final llega a cero: Aplicamos la fórmula 47 ~ 48 ~ La altura máxima que alcanza la pelota hasta detenerse en el aire es de 45,87 metros (desde allí empieza a caer). Ahora vamos a calcular la velocidad que tuvo cuando habían transcurrido 2 s: Aplicamos la fórmula, considerando la velocidad como final a los 2 segundos: 48 ~ 49 ~ Entonces, la velocidad que llevaba la pelota hacia arriba, a los 2 segundos, fue de 10,38 metros por segundo. Con este dato, podemos calcular la altura que alcanzó en ese momento (2 segundos). A los 2 segundos la pelota alcanzó una altura de 40,38 metros. Veamos ahora qué sucede cuando han transcurrido 5 segundos: Podemos calcular su velocidad usando la misma fórmula 49 ~ 50 ~ El que obtengamos -19,05 metros por segundo indica que la pelota va cayendo. También podemos usar la fórmula de caída libre, ya que al llegar a su altura máxima la pelota tiene cero velocidad, pero a los 5 segundos informados debemos restarle los 3,06 segundos durante los que la pelota ha ascendido hasta su altura máxima y desde donde empieza a caer: Entonces tenemos 5 s – 3,06 s = 1,94 segundo de caída libre, y su velocidad la dará la fórmula Pero ahora la velocidad inicial es cero, entonces Ahora podemos calcular la altura a que ha llegado la pelota a los 5 segundos; o sea, cuando va cayendo y lleva una velocidad de 19,03 metros por segundo: 50 ~ 51 ~ Transcurridos 5 segundos, la pelota va cayendo y se encuentra a 27, 41 metros de altura. Una pregunta adicional ¿cuánto ha descendido la pelota desde su altura máxima? Ya sabemos que la altura máxima fue 45,87 metros, entones a esa altura le restamos los 27,41 metros y resulta que la pelota ha descendido 18,46 metros. Ejercicio de práctica Resolvamos ahora el siguiente problema: Un objeto es eyectado verticalmente y alcanza una altura máxima de 45 m desde el nivel de lanzamiento. Considerando la aceleración de gravedad igual a 10 m/s2 y despreciando efectos debidos al roce con el aire, ¿cuánto tiempo duró el ascenso? Veamos los datos que tenemos: 51 ~ 52 ~ Primero necesitamos calcular (conocer) la velocidad inicial (V0), para ello usamos la fórmula 52 ~ 53 ~ Ahora, para conocer el tiempo que demora el objeto en llegar a velocidad cero (altura máxima = 45 m) utilizamos la fórmula Respuesta: El objeto demora 3 segundos en llegar a 45 metros de altura máxima. 53 ~ 54 ~ 8).- Movimiento en dos dimensiones.- Movimiento parabólico Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme. Puede ser analizado como la composición de dos movimientos rectilíneos: un movimiento rectilíneo uniforme horizontal y un movimiento rectilíneo uniformemente acelerado vertical. Movimiento semiparabólico. (Desde lo alto de un edificio se arroja una pelota a la distancia en forma vertical y gradualmente caerá en el suelo a una distancia “x” del suelo del edificio)(Ver imagen superior, posicionar el mouse sobre el dibujo, darle click con el botón derecho y abrir hipervínculo). 54 ~ 55 ~ Movimiento parabólico completo (desde el suelo se avienta una pelota hacia arriba y hacia la distancia; entonces alcanzará una altura máxima y luego empezará a caer, describiendo una parábola completa) El movimiento parabólico completo se puede considerar como la composición de un avance horizontal rectilíneo uniforme y un lanzamiento vertical hacia arriba, que es un movimiento rectilíneo uniformemente acelerado hacia abajo (MRUA) por la acción de la gravedad. En condiciones ideales de resistencia al avance nulo y campo gravitatorio uniforme, lo anterior implica que: 1. Un cuerpo que se deja caer libremente y otro que es lanzado horizontalmente desde la misma altura tardan lo mismo en llegar al suelo. 2. La independencia de la masa en la caída libre y el lanzamiento vertical es igual de válida en los movimientos parabólicos. 3. Un cuerpo lanzado verticalmente hacia arriba y otro parabólicamente completo que alcance la misma altura tarda lo mismo en caer. EJEMPLO TIRO PARABÓLICO: 1.- Calcular la distancia, la altura y el tiempo de caída de un tiro parabólico que lleva una velocidad de 30m/s y forma una ángulo de 60° con la horizontal. 55 Solución: ~ 56 ~ Primero hacemos dibujo esquematizando el problema: Segundo, anotamos los datos que nos da el problema: Vo= 30 m/s ø= 60° con respecto a su horizontal Tercero, descomponemos la velocidad para poder aplicar formulas (recuerda, componentes de “x” con componentes de “x” y componentes de “y” con componentes de “y”) Vox= 30 cos 60= 15 Voy= 30 sen 60= 25.9 Aplicamos fórmulas (ver un poco mas adelante las fórmulas que podrás aplicar): Vf = Vo + gt t = (Vf – Vo) / g 56 (Vf)² = (Vo)² + 2gh h = (Vo) (t) + ½ (a) (t)² ~ 57 ~ t = (Vf – Vo) / g (asumimos solo las componentes verticales, y consideramos que la velocidad al alcanzar la cúspide de la parábola es cero) t= (0-25.9) / (-9.81) t= 2.64 s (cuando el proyectil alcanza la parte mas alta de la parábola “tiempo de subida”), por lo tanto el tiempo de caída es el mismo (“tiempo de bajada”); es decir 2.64 s (por lo tanto el tiempo de subida y de bajada seria 2 x 2.64= 5.28 s) Como ya conocemos el tiempo de subida, podemos aplicar la fórmula para sacar la altura máxima: h = (Vo) (t) + ½ (a) (t)² h= (25.9) (2.64) + ½ (-9.81) (2.64)² h= 34.19m y para calcular la distancia, aplicamos la fórmula del movimiento horizontal “sin aceleración”; es decir la fórmula del MRU d=vt d= (Vox) (t) d= (15) (5.28) d= 79.2 m 57 ~ 58 ~ HAZ LA SIGUIENTE AUTOEVALUACIÓN CORRESPONDIENTE AL BLOQUE II. I).- Primera Sección 1.- ¿Cuántos tipos de movimiento puedes describir? 2.- ¿Cuál consideras que es la característica principal entre un movimiento acelerado y un movimiento que no está acelerado? (que sucede con la velocidad de uno y del otro?). 3.- ¿Qué aplicaciones puedes encontrar en la industria, usando los diferentes tipos de movimiento? 4.- ¿Qué entiendes por movimiento en una sola dimensión? 5.- ¿Qué entiendes por movimiento en dos dimensiones? 6.- En las pasadas olimpiadas, los arqueros disparaban sus flechas “apuntando” un poco “arriba” del blanco, ¿por que? ¿Qué tipo de movimiento hacen las flechas? 7.- Cuando lanzas una piedra, cuando pateas un balón, cuando vas a pescar y lanzas la plomada, etc. ¿a cuanto grados con respecto al suelo tienes que lanzar el objeto para que alcance la máxima distancia? 8.- ¿Cuál es la diferencia entre rapidez y velocidad? 9.- ¿Cuál es la diferencia entre desplazamiento y distancia? 10.- ¿Cuál es la diferencia entre velocidad y aceleración? 11.- Cita un ejemplo de caída libre. 12.- Si disparas una bala hacia arriba hasta llegar a su altura máxima ¿el tiempo que tardo en llegar hasta arriba, será el mismo que tarda en llegar hasta abajo? (considera el rozamiento del aire nulo). 13.- Si disparas una bala hacia arriba hasta llegar a su altura máxima ¿la velocidad con que sale disparada, será igual a la velocidad con que llega al suelo? (considera el rozamiento del aire nulo). 14.- En una carretera “recta”, se encuentran dos motociclistas separados uno del otro una distancia de 100 Km. El primer motociclista sale con una velocidad uniforme de 25 km/hr y en ese mismo instante sale a su encuentro el segundo motociclista con una velocidad uniforme de 75 km/hr. En ese mismo instante una 58 ~ 59 ~ mosca que estaba parada en el casco del primer motociclista sale con rumbo al casco del segundo motociclista, llega a este e inmediatamente vuele a salir con rumbo al casco del primer motociclista, llega a este e inmediatamente vuelve a salir al casco del segundo motociclista y así sucesivamente. ¿Que distancia recorrió la mosca si esta volaba a una velocidad de 82 km/hr al momento en que chocan los dos motociclistas? 15.- Si avientas una plomada de 20 Kg y otra de1 Kg. Ambas al mismo tiempo y desde una altura de 1000 metros. ¿Cuál de ellas llegará primero al suelo? (considera despreciable la fricción del aire) Respuestas: 1.-Movimiento rectilíneo (MRU con velocidad constante) / Movimiento rectilíneo (MRU con aceleración constante) / Movimiento circular / Movimiento armónico / Movimiento parabólico / movimiento en caída libre, etc. 2.- En el movimiento acelerado la velocidad se incrementa (o decrementa si la aceleración es negativa. Y en el movimiento que no esta acelerado la velocidad es constante. 3.- Abanicos, tornillos sin fin, ruedas, poleas; es decir todo aquel mecanismo que se mueve representa un movimiento y puede analizarse para conocer su resultado. 4.- Es un movimiento cuya velocidad no se descompone en vectores a lo largo de dos o mas ejes (solo se da en un eje, es decir solo un eje entre el eje “x”, “y” y “z”) 5.- Es un movimiento que para estudiarlo, su velocidad (inclinada) tenemos que descomponerla entre dos ejes para poder entonces analizar el comportamiento en cada una de sus direcciones. 6.- las flecha hacen un tipo de movimiento parabólico, los arqueros tenían que disparar un poco arriba del blanco para que bajaran las flechas y dieran en el blanco (caían por la acción de la gravedad). 7.- se tiene que lanzar a 45° de la horizontal. 8, 9,10.- ve al final de este libro y encontraras las definiciones. 11.- salto en paracaídas de un puente, II).- Segunda Sección Antes de realizar los ejercicios de esta sección, deberás determinar el tipo de movimiento que se presenta y hasta entonces podrás resolver los problemas. - Caída libre.“Un cuerpo tiene una caída libre si desciende sobre la superficie de la tierra y no sufre ninguna resistencia originada por el aire o cualquier otra sustancia”. (Recuerda, aquí en este caso la aceleración es igual a la gravedad; en la tierra la gravedad es: g = 9.81 m/s²) (Ten en cuenta también, que la gravedad siempre actúa en dirección hacia abajo, por lo que deberás considerar su signo si es caída libre o si es tiro vertical hacia arriba) Vf = Vo + gt t = (Vf – Vo) / g (Vf)² = (Vo)² + 2gh h = (Vo) (t) + ½ (g) (t)² h= (Vf² - Vo²) / 2g h=gt² / 2 59 ~ 60 ~ Vf= velocidad final Vo= velocidad inicial g = gravedad (9.81 m/s²) t = tiempo (en segundos) d = distancia (en metros) h= altura - Tiro Vertical.“Cuando un cuerpo se lanza verticalmente hacia arriba observándose que su velocidad va disminuyendo hasta anularse al alcanzar su altura máxima. Inmediatamente inicia su regreso para llegar al mismo punto de donde fue lanzado y adquiere la misma velocidad con la cual partió. (Vf)² = (Vo)² + 2gh H max= (Vo²) / (2g) t (subir) = Vo / g t (aire) = 2 Vo / g - Tiro Parabólico.“El tiro parabólico es un ejemplo de movimiento realizado por un cuerpo en dos dimensiones o sobre un plano, Es la resultante de la suma vertical de un movimiento horizontal uniforme y de un movimiento vertical rectilíneo uniformemente acelerado (Recuerda que al ser la velocidad un vector, este se debe descomponer (si está inclinada) en sus componentes vertical y horizontal antes de aplicar las formulas; recuerda utiliza componentes horizontales con componentes horizontales y en consecuencia componentes verticales con componentes verticales. NO MEZCLES. Ejemplo Si tenemos una velocidad (V) de digamos 10 en una dirección de 30° con respecto a su horizontal (+x) y x 60 ~ 61 ~ Para efectos de descomponer la velocidad en sus componentes “x” y “y”, deberemos usar: Vx= V cos 30° Vx= 10 cos 30 Vx= 8.66 Y Vy= V sen 30° Vy= 10 sen 30° Vy= 5 (Entra a esta liga (cópiala y pégala en tu navegador), encontrarás una calculadora cuando tiren objetos en tiro parabólico (o caída libre), pruébala con tus ejercicios para comparar tus resultados) http://www.gobiernodecanarias.org/educacion/3/usrn/lentiscal/2-CD-Fiisca-TIC/1-2Cinematica/1-CinematicaApplets/calculadoraparabolico/parabolico.htm - Tiro Parabólico horizontal.“La trayectoria o camino curvo que sigue un cuerpo al ser lanzado horizontalmente al vacio, resultado de dos movimientos independiente: Un movimiento horizontal con velocidad constante y otro vertical hacia abajo afectado por la gravedad”. Para calcular la distancia recorrida en forma horizontal tenemos. d=vt d=distancia (metros) v=velocidad (m/s) t= tiempo (segundos) La trayectoria se puede determinar por medio del método del paralelogramo; para ello, basta representar mediante vectores las componentes horizontal y vertical del 61 movimiento. ~ 62 ~ - Tiro Parabólico oblicuo.“La trayectoria que sigue un cuerpo cuando es lanzado con una velocidad inicial que forma un ángulo con el eje horizontal. -MRU (Movimiento rectilíneo Uniforme / No hay aceleración, la velocidad es constante); se trata de un movimiento horizontal al 100%. d=vt t= d/v v= d/t d=distancia (acostúmbrate a usar metros, homologa unidades) t= tiempo (acostúmbrate a usar segundos, homologa unidades) v= velocidad (acostúmbrate a usar metros / segundos, homologa unidades) -MRUA (Movimiento rectilíneo Uniformemente Acelerado / Si hay aceleración, la velocidad cambiará); se trata de un movimiento horizontal al 100% Vf = Vo + at a = (Vf – Vo) / t t = (Vf – Vo) / a d = (Vo) (t) + ½ (a) (t)² d= (Vf)² / (2 a) (Vf)²= (Vo)² + 2(a) (d) d= Vo (t) + ½ a(t)² 62 Vf= velocidad final Vo= velocidad inicial a = aceleración t = tiempo d = distancia ~ 63 ~ -Movimiento circular.“Un cuerpo describe un movimiento circular cuando gira alrededor de un punto fijo central llamado eje de rotación, las trayectoria son circunferencias concéntricas de longitud diferente y de radio igual a la distancia entre la partícula considerada y el eje de rotación. Conceptos que deberás saber: a).- Angulo.- Es la abertura comprendida entre radios, que limita un arco de circunferencia. b).- Radian.- Es en ángulo central al que corresponde un arco de longitud igual al radio. 2π rad= 360ﱡ Por lo tanto 1 rad = 360 ﱡ/ 2π = 180 ﱡ/ π = 57.10ﱡ c).- Periodo.- Es el tiempo que tarda un cuerpo en dar una vuelta completa o en completar un ciclo T= segundos transcurridos / 1 ciclo d).- Frecuencia.- Es el numero de vueltas o revoluciones o ciclos que efectúa un móvil en un segundo 63 f= numero de ciclos / 1 segundo ~ 64 ~ -Movimiento circular Uniforme (MCU).“Este movimiento se produce con velocidad angular constante describe ángulos iguales en tiempos iguales, el vector velocidad mantiene constante su magnitud pero no su dirección, toda vez que esta se conserva tangente a la trayectoria del cuerpo.” -Velocidad angular media.“Cuando la velocidad angular de un cuerpo no es constante o uniforme, podemos determinar la velocidad angular media al conocer su velocidad angular inicial y su velocidad angular final.” Wm=(Wf – Wo) / 2 La velocidad angular representa el cociente entre el desplazamiento angular de un cuerpo y el tiempo que tarda en efectuarlo. W=ø / t También se puede determinar si sabemos el tiempo que tarda en dar una vuelta completa W= 2π / t en rad/s -Movimiento circular Uniformemente acelerado (MCUA).“Es cuando un móvil con trayectoria circular aumenta o disminuye en cada unidad de tiempo” -Velocidad angular instantánea.“La velocidad angular instantánea representa el desplazamiento angular efectuado por un móvil en un tiempo muy pequeño que casi tiende a cero.” -Aceleración angular media.“Cuando el movimiento circular de un móvil su velocidad angular no permanece constante, sino que varia. Decimos entonces que sufre una aceleración angular 64 ( =عWf-Wo) / (tf-to) ~ 65 ~ Formulas: Ø = (Wo) (t) + (عt²)/2 Ø= (Wf)² - (Wo)² / 2ع Ø= ((Wf-Wo)/2) (t) Wf= Wo + عt -Velocidad lineal o tangencial.Cuando un cuerpo se encuentra girando cada una de las partículas del mismo se mueve a lo largo de la circunferencia descrita por el con una velocidad lineal mayor a medida que aumenta el radio de la circunferencia. VL= 2 π r / t -Aceleración lineal.Una partícula presenta esta aceleración cuando durante su movimiento circular cambia su velocidad lineal. aL= (VLf – VLo) / t -Aceleración radial.En un movimiento circular uniforme la magnitud de la velocidad lineal permanece constante pero su dirección cambia permanentemente en forma tangencial a la circunferencia. Dicho cambio se debe a la aceleración radial o centrípeta. Es radial porque actúa perpendicularmente a la velocidad lineal, y centrípeta porque su sentido es hacia el centro de giro o eje de rotación. 65 ~ 66 ~ ar= (VL)² / r ar= W² r Ejemplos resueltos: 1.- Se deja caer una piedra desde lo alto de un edificio y tarda en caer al suelo 4 segundos ¿Determine la altura del edificio y la velocidad con que llega al suelo? Solución: Datos: t=4s Vo= 0 Vf=? h=? g= 9.81 m/s² Formulas: h= gt² / 2 h= (9.819(4)² / 2 h= 78.48 m Vf= gt 66 Vf= (9.81) (4) Vf= 39.27 m/s ~ 67 ~ 2.- Se deja caer una pelota desde lo alto de un edificio de 60 metros, calcule ¿El tiempo que tarda en caer la pelota y la velocidad con que llega al piso? Solución: Datos: Vo= 0 Vf=? h= 60 m g= 9.81 m/s² t=? Formulas: h= gt² / 2 Por lo tanto despejando el tiempo tenemos t=√ (2h/g) t=√ ((2) (60) / (9.81)) t=3.49 s Vf=gt Vf= (9.81) (3.49) Vf= 34.23 m/s 3.- Un balón de futbol se deja caer desde lo alto de una ventana de un edificio, y tarda en llegar al suelo 5 segundos. ¿Calcule la altura de la cual cayo y el valor de la velocidad con que choca contra el suelo. Solución: Datos: Vo=0 67 Vf=? t=5 s h=? ~ 68 ~ Vf=? Formulas: h= gt² / 2 h= (9.81) (5)² / 2 h= 122.6 m Vf=Vo + gt Vf= 0 + 9.81(5) Vf= 49.05 m/s 4.- Una piedra se suelta al vacio desde una altura de 120 Metros, calcula el tiempo que tarda en caer, la velocidad que llevara al primer segundo de caída, la altura recorrida en un segundo y la velocidad con la cual choca contra el suelo. Solución: Datos: h=120 m g= 9.81 m/s² Vf1seg=? Vo=0 T=? H1seg=? Vfchoque=? Formulas: h=gt² / 2 68 h= (9.81) (1)² / 2 h= 4.96 m (en un segundo es la distancia recorrida) ~ 69 ~ t=√ (2h/g) t=√ ((2) (120)/ (9.81)) t= 4.94 s (tiempo que tarda en llegar al suelo) Vf=gt Vf= (9.81) (1) Vf= 9.81 m/s (velocidad que llevara la pelota en un segundo Vf=gt Vf= (9.81) (4.94) Vf= 48.46 m/s (velocidad que llevara al chocar contra el suelo 5.- Un cañón avienta una bala hacia arriba con una velocidad de 80 metros/segundo, calcule la altura máxima que alcanzara la bala, el tiempo que tardara en subir, el tiempo que durara en el aire, la velocidad que llevará la bala transcurridos 1 segundo? Solución: Datos Vo= 80 m/s Vf= 0 h=? Formulas: h max= (Vo)² / 2g h max= (80)² / ((2)(9.81)) h max= 326.1 m (altura máxima alcanzada por la bala t subir= Vo/g t subir= 80 / 9.81 69 ~ 70 ~ t subir= 8.15 segundo por lo tanto el tiempo total en el aire, es el tiempo en subir mas el tiempo en bajar (que es el mismo), dándonos un total = 16.30 s Vf=80-gt Vf=80-9.91(1) Vf= 70.19 m/s (velocidad que llevara la bala transcurridos 1 segundo después del disparo) 6.- De un edificio de cierta altura, se avienta de arriba del techo y hacia arriba una pelota con una velocidad de 5 m/s. Si de la altura del techo hasta el piso transcurren 6 segundos de tiempo, calcule la velocidad con que llegara al piso la pelota, la altura máxima alcanzada medida a partir del piso? h1= altura del techo hasta la altura que alcanzo la pelota V=5m/s T=6 segundo h2=altura del edificio 70 ~ 71 ~ Solución: Datos Vo= 5m/s h1=Vo² / ((2) (g)) h1= (5)² / ((2) (9.81)) h1=1.27 m (distancia recorrida desde la altura del techo hasta la altura máxima que alcanzo la pelota) El tiempo en subir desde el techo hasta la altura máxima fue de. t subir= Vo/g t subir= 5/9.81 t subir= 0.509 s por lo tanto, la velocidad final con que llego la pelota al suelo se calcula: Vf=VO+gt Vf=0+ (9.91) (0.509+6) Vf= 64.50 m/s La altura del edificio se calcula: h=Vo(t) + gt²/2 h=5(6)+9.81 (6)² / (2) h= 206 m (Cuiden las direcciones de las velocidades (hacia arriba o hacia abajo), cuando apliquen formulas; la aceleración siempre va hacia abajo) 7.- Se lanza una piedra horizontalmente con una velocidad de 25 m/s desde una altura de 60 metros. ¿Calcule el tiempo que tarda en llegar al suelo, el valor de la velocidad vertical que lleva a los 2 segundos, la distancia horizontal a la que caerá la piedra? 71 ~ 72 ~ 25 m/s h=60 metros Distancia horizontal=? Datos: Vo=25m/s h= 60 metros Distancia=? Formulas t en caer= √ ((2) (h)/ (g)) t en caer= √ ((2) (60) (9.81)) t en caer= 3.49 s (tiempo que tardara la pelota en caer al suelo) Movimiento horizontal Uniforme d=vt d= (25) (3.49) d= 87.25 m (distancia horizontal a la cual caerá la pelota) 72 La velocidad vertical (MRUA) que lleva a los dos segundos, se obtiene: Vf=Vo+gt Vf=0+ (9.81) (2) Vf= 19.62 m/s ~ 73 ~ 8.- Una pelota es lanzada horizontalmente desde la azotea de un edificio de 50 metros de altura y llega al suelo a una distancia de 45 metros de la base del edificio ¿Cuál es la rapidez inicial con que se lanzó la bola? V=? m/s h=50 metros 73 ~ 74 ~ Distancia horizontal=45 m Datos: Vo=? h=50m d hor=45 m g= 9.81m/s² t caer= √ ((2) (h) / (g)) t caer= √ ((2) (50) / (9.81)) t caer= 3.19 segundos d horizontal= (Vo horizontal) (t) d horizontal= (Vo Horizontal) (3.19) por lo tanto Vo= 45/3.19= 14.09 m/s (es la velocidad horizontal con la cual se lanzo) 9.- Un tigre salta en dirección horizontal desde una roca de 12 metros de altura, con una rapidez de 4.5 m/s a que distancia de la base de la roca llegara al suelo? V=4.5 m/s h=12 metros 74 ~ 75 ~ Distancia horizontal= ¿? m d horizontal= (V horizontal) (tiempo) t= √ ((2) (h) / (g) t= √ ((2) (12) / (9.81)) t= 1.56 s (tiempo que tarda en llegar al suelo) Entonces d horizontal= (4.5) (1.56) d horizontal= 7.02 m 10.- Los clavadistas de la quebrada de Acapulco se lanzan horizontalmente desde una plataforma de piedra que se encuentra aproximadamente 35 metros por arriba de la superficie del agua, pero deben evitar las formaciones rocosas que se extienden dentro del agua hasta 5 metros de la base del acantilado. a) Cual es la rapidez mínima necesaria para realizar el clavado sin peligro? b) Cuanto tiempo pasa el clavadista en el aire? c) Por que se tiene que lanzar horizontalmente V=? m/s h=35 metros 75 ~ 76 ~ d=5 m b) Cuanto tiempo pasa el clavadista en el aire t caer= √ ((2) (h) / (g)) t caer= √ ((2) (35) / (9.81)) t caer= 2.67 seg a) Cual es la rapidez mínima necesaria para realizar el clavado sin peligro Vx= dx / t Vx= (5) / (2.67) Vx= 1.87 m/s c) Por que se tiene que lanzar horizontalmente? Debido a que si se lanza ligeramente hacia arriba de la horizontal o ligeramente hacia debajo de la horizontal, la velocidad estaría inclinada y por lo tanto se descompondría en dos vectores (uno vertical y el otro horizontal), al descomponerse resultaría por lógica que el componente horizontal resultaría menor que la velocidad calculada en el inciso a (1.87 m/s) y por lo tanto la distancia a alcanzar en forma horizontal seria menor a los 5 metros, pegándose entonces con las piedras. 11.- Un jugador de futbol le pega a una pelota con un ángulo de 37° con respecto al plano horizontal, comunicándole una velocidad inicial de 15 m/s, encontrar: a) El tiempo que dura la pelota en el aire b) La altura máxima alcanzada por el balón c) El alcance horizontal de la pelota a) Tiempo que alcanzar la pelota en el aire 76 El tiempo en subir será: Vf= Vo + gt 0= (9.02) + (9.81 (t) t= 0.91 s, por lo tanto el tiempo en subir y bajar será el doble, es decir = 1.83 s ~ 77 ~ b) La altura máxima alcanza por el balón h max= (Vo)² / ((2) (g)) h max= (9.02)² / ((2) (9.81)) h max= 4.14 m c) El alcance horizontal será Vo= 15 m/s por lo tanto, la velocidad horizontal será Vx=Vo cos 37° Vy= (15) (0.798) = 11.97 m/s Por lo tanto, aplicando formula: Vx= Distancia / Tiempo Distancia = (Vx) (tiempo) Distancia= (11.97) (1.83) = 21.90 m 12.- Dato curioso! Cuando vas a pescar de la orilla, con una “piola” de pescar que tiene un anzuelo y una plomada en el extremo, la máxima distancia posible a alcanzar la obtienes con la combinación de tres factores: a) Un movimiento circular amplio (Girando la cuerda, la plomada hará un movimiento circular y por lo tanto la plomada tendrá una velocidad tangencial a la circunferencia del giro, entre mas grande el radio del giro, mayor será su velocidad tangencial!!!!) 77 ~ 78 ~ b) Una velocidad de giro rápida (entre mas rápido completes la vuelta, mayor velocidad lineal o tangencial podrás alcanzar) c) La máxima distancia horizontal que puedes alcanzar cuando lanzas un objeto, es con una inclinación de 45° Ejemplo: Un pescador va a pescar de la orilla y empieza a girar la cuerda para el lanzamiento alcanzando a dar la vuelta completa (un periodo) en 0.20 segundos, tendiendo un radio de 1.5 metros. a) a que distancia llegará la plomada si el lanzamiento es a 45°? La velocidad con que sale la plomada, la podemos calcular así. VL=2π r / t VL= (2) (3.1416) / (0.20) VL= 31.4 m/s Dicha velocidad, al salir con un ángulo con respecto a la horizontal de 45°, implica que dicha velocidad se descomponga en forma vertical y en forma horizontal (la forma horizontal es la que nos interesa para luego aplicar la formula para conocer la distancia) Por lo tanto tenemos: V Horizontal= (V inicial) (cos 45°) V horizontal = (31.4) (0.7071) = 22.20 m/s Entonces: Vx=Distancia / Tiempo Distancia = (Vx) (tiempo) Distancia = (22.20) (t) Como no conocemos el tiempo, lo podemos sacar con el tiempo que pasará en el aire la plomada, así: Vy= (V inicial) (Sen 45°) Vy= (31.4) (0.7071)= 22.20 m/s La altura máxima de la plomada, la podemos calcular así: Vf=Vo + gt 0= 22.20 + (9.81) (t) por lo tanto el t=2.26 (hasta la altura máxima) 78 ~ 79 ~ Sin embargo como la plomada luego bajará (tiro parabólico oblicuo), el tiempo total será el resultado de multiplicarlo por 2 t= (2.26) (2)= 4.52 seg Por lo tanto, como ya conocemos el tiempo, sustituimos en. Vx=Distancia / Tiempo Distancia = (Vx) (tiempo) Distancia = (22.20) (4.52) = 100.3 m (es la distancia que alcanzará la plomada) Tarea sobre este ejercicio: a) Con el mismo ángulo de tiro (45°), calcula la distancia que alcanzara la plomada si el radio de giro de las vueltas es menor; es decir de 1.3 metros. b) Con el mismo radio de giro inicial (1.5 metros), pero disminuyendo el ángulo de lanzamiento a 40° calcula la distancia. c) Con el mismo radio de giro inicial (1.5 metros), pero aumentando el ángulo de lanzamiento a 50° calcula la distancia. 13.- Un automóvil se mueve hacia la derecha a lo largo de una carretera recta. Luego el conductor acciona los frenos. Si la velocidad inicial es de 15 m/s y le toma 5 segundos frenar a 5 m/s ¿Cuál fue la aceleración del automóvil? Vo= 15 m/s t= 5 s a media (a med) =? a media= (Vf-Vo) / (tf-tf) a med= (5-15) / (5) a med= -10/5 = -2 m/s² (es negativo el resultado porque le auto va desacelerando) 79 ~ 80 ~ 14.- Se está trabajando en el diseño de un aeropuerto para aviones pequeños. Los aviones que usen este campo aéreo deberán alcanzar una rapidez de al menos 100 km/hr antes de despegar, y un tipo de avión en particular puede acelerar 2 m/s². a) Si la pista tiene 150 m de largo, ¿Este avión en particular podrá alcanzar la rapidez requerida para el despegue? Vf= 100 km/hr (convirtiendo es igual a 27.78 m/s) a= 2 m/s² d= 150 metros Formulas (en movimiento de línea recta horizontal): 1.- a= (Vf-Vo) / t (a=aceleración, Vf= velocidad final, Vo= velocidad inicial t= tiempo 2.- x= Vo (t) + ½ a (t)² (x= distancia) 3.- (Vf)²= (Vo)² + 2 (a) (x) Utilizando la formula 3. x= ((Vf)²-(Vo)²) / 2 a x= ((27.78)² - (0)²) / 2(2) x= 191.82 metros Por lo tanto NO PODRA despegar, ya que la pista solo mide 150 m 15.- Cuanto le toma a un automóvil cruzar una intersección de 30 metros de ancho después de que la luz del semáforo cambia a verde, si el automóvil acelera de una manera constante desde el reposo a unos 2 m/s² Formulas (en movimiento de línea recta horizontal): 1.- a= (Vf-Vo) / t (a=aceleración, Vf= velocidad final, Vo= velocidad inicial t= tiempo 2.- x= Vo (t) + ½ a (t)² (x= distancia) 3.- (Vf)²= (Vo)² + 2 (a) (x) Tomamos la 3 80 (Vf)²= (Vo)² + 2 (a) (x) (Vf)²= (0)² + 2(2) (30) Vf= 10.95 m/s ~ 81 ~ Luego tomamos la 1 a= (Vf-Vo) / t 2= (10.95-0) / t t= 5.47 s 16.- Se requiere diseñar un sistema de bolsas de aire que proteja al conductor en una colisión frontal a una rapidez de 60 millas/hora. Estime que tan rápido se debe inflar la bolsa de aire para proteger efectivamente al conductor. (Se estima que la distancia recorrida por el automóvil cuando la bolsa se infla es de 1 metro) 1.- a= (Vf-Vo) / t (a=aceleración, Vf= velocidad final, Vo= velocidad inicial t= tiempo 2.- x= Vo (t) + ½ a (t)² (x= distancia) 3.- (Vf)²= (Vo)² + 2 (a) (x) 60 millas/hr = 26.66 m/s Tomamos la formula 3 (Vf)²= (Vo)² + 2 (a) (x) (0)²= (26.66)² + 2(a) (1) a= -355 m/s² (se desacelera) luego tomamos la formula 1 a= (Vf-Vo) / t -355= (0-26.66) / t t= 0.075 s 17.- Usted conduce a su casa desde la escuela a unos 95 km/hr constantes durante 130 km. Entonces comienza a llover y baja la velocidad hasta 65 km/hr. Llega a casa después de conducir 3 y 20 minutos a) Que tan lejos esta su casa de la escuela? 81 b) Cual fue la rapidez promedio? Distancia1 = 130 Kilómetros V1 Constante=95 km/hr ~ 82 ~ Distancia 2=? V2 = 65 km/hr Tiempo total de conducción de 3 hr y 20 minutos, lo que es lo mismo a 3.33 horas. Sacamos el tiempo que hizo en el primer trayecto. d1=v1 (t1) 130=95(t) t1=1.36 horas por lo tanto si en total hizo de manejo 3.33 horas, por diferencia de tiempo tenemos que el tiempo que duro en la segunda etapa fue de: 3.33-1.39= 1.94 por lo que podemos obtener la distancia que recorrió en dicha segunda etapa. d2=V2 (t2) d2=65(1.94) d2= 126 km por lo tanto la distancia total fue de 130 + 126= 256 km y la rapidez promedio fue de d=vt, v=d/t v=256/3.33= 76.87 km/hr 18.- Una persona trota 8 vueltas completas alrededor de una pista de un cuarto de milla en un tiempo total de 12.5 minutos, calcule la rapidez promedio a la que trotaba esta persona. Solución: Si la pista tenia una longitud ¼ de milla, quiere decir que 4 vueltas hacen 1 milla, y por lo tanto 8 vueltas hacen 2 millas Si el tiempo total fue de 12.5 minutos, podemos sacar la rapidez promedio así: d=vt 82 v=d/t v= 2/12.5= 0.16 Mi/Hr ~ 83 ~ 18.- Dos locomotoras se aproximan una a la otra en unas vías paralelas. Cada una tiene una rapidez de 95 Km/hr. Si inicialmente están separadas 8.5 km. ¿Cuánto tiempo para antes de que se alcancen’ Deducción: Como se van a encontrar una a la otra y van a la misma velocidad, podemos concluir que la distancia seria a la mitad (en la que se encuentren), es decir 8.5 / 2 = 4.25 km Entonces d=vt 4.25= 95 (t) t= 0.044 hr (o lo que es lo mismo en 2.68 minutos 19.- Un automóvil frena uniformemente desde una rapidez de 21 m/s hasta el reposo en 6 s ¿Qué distancia recorrió en ese tiempo? Formulas (MRUA) 1.- a= (Vf-Vo) / t (a=aceleración, Vf= velocidad final, Vo= velocidad inicial t= tiempo 2.- x= Vo (t) + ½ a (t)² (x= distancia) 3.- (Vf)²= (Vo)² + 2 (a) (x) Utilizamos la formula 1 a= (Vf-Vo) / t a= (0-21) / 6 a= -3.5 (salió negativo porque frena) Luego utilizamos la formula 2 x= Vo (t) + ½ a (t)² x=21 – ½ (3.5) (6)² x= 63 m 20.- Un automóvil que conduce su automóvil va a 25 m/s sobre la autopista. El conductor del automóvil busca una oportunidad para rebasarlo y estima que su auto puede acelerar a 1.0 m/s². Tenga en cuenta que tiene que cubrir los 20 metros de largo del camión, más 10 metros de espacio libre atrás de este y 10 83 ~ 84 ~ metros más al frente del mismo. En el carril contrario, ve que otro automóvil se aproxima y que probablemente también viaja a 25 m/s. El conductor estima que el automóvil está aproximadamente a 400 metros de distancia. ¿Debe intentar rebasar? Fórmulas (MRUA) 1.- a= (Vf-Vo) / t (a=aceleración, Vf= velocidad final, Vo= velocidad inicial t= tiempo 2.- x= Vo (t) + ½ a (t)² (x= distancia) 3.- (Vf)²= (Vo)² + 2 (a) (x) Datos: Vo= 25 m/s a= 1 m/s² Distancia igual a 20+10+10= 40 metros Distancia 2 = 400 metros Si el carro que viene en el carril contrario opuesto a 25 m/s: supuestos: - en 8 segundos el carro de frente habrá recorrido la mitad del trayecto; es decir 200 metros (x=vt , x= 25(8)= 200) por lo que el camión que también va a 25 m/s, también habrá recorrido los 200 metros (es decir hay un máximo de 8 segundos para hacer el rebase. La pregunta es, cuanto habrá recorrido el carro que va rebasando en 8 segundos? Si el resultado sale mayor a 200 metros, entonces si podrá rebasar. x= Vo (t) + ½ a (t)² (x= distancia) x= (25)(8) + ½ (1)(8)² x= 232 (Si podrá rebasar) 21.- Una dama que conduce su automóvil a 45 km/hr se aproxima a una intersección justo cuando la luz del semáforo cambia a amarillo. Ella sabe que la luz amarilla tarda solo 2 segundos de cambiar al rojo y que está a 28 m de distancia del lado cercano de la intersección. ¿Deberá intentar detenerse o aumentar la rapidez para cruzar la intersección antes de que la luz cambie a rojo? La intersección tiene 15 m de ancho, además de que solo puede acelerar de 45 a 65 km/hr en 6 segundos. 84 ~ 85 ~ Fórmulas (MRUA) 1.- a= (Vf-Vo) / t (a=aceleración, Vf= velocidad final, Vo= velocidad inicial t= tiempo 2.- x= Vo (t) + ½ a (t)² (x= distancia) 3.- (Vf)²= (Vo)² + 2 (a) (x) Primero determinamos realizamos las equivalencias de las velocidades, para tenerlas en m/s: Vo= 45 km/hr * 1000m /1 km * 1 hr / 60 min * 1 min / 60 seg = 12.5 m/s Vf= 65 kmhr * 1000m / 1 km * 1 hr / 60min * 1 min / 60 seg = 18.05 m/s Después obtenemos la aceleración que puede alcanzar el carro: a= (18.05-12.5) / 6 = 0.925 m/s² Luego utilizamos la formula de desplazamiento para despejar la aceleración que requiere el carro en 2 segundos para desplazarse (28+15) metros: x= Vo (t) + ½ a (t)² (x= distancia) (28+15) = (12.5)(2) + ½ (a)(2)² 43=25+2 a a=(43-25) / 2 = 9 m/s² Como la aceleración para recorrer 43 m en 2 s es de 9m/s², y el carro (su potencia) solo puede acelerar a 0.925 m/s², (es decir resulta menor su capacidad de aceleración de la que ocupa), sacamos por conclusión de que debe detenerse. 22.- Un ciclista en una bici con un rin de diámetro de 73.66 cm logra dar 50 rpm. Calcular la velocidad angular, la distancia recorrida y la aceleración angular si su velocidad angular se duplica durante 10 segundos. Información que tenemos: 85 ~ 86 ~ Diámetro= 73.66, por lo que su radio es de 36.83 cm (r=36.83 cm por lo que en metros es de 0.3683 m) w=50 rpm Formulas: (velocidad angular) Ø=s/r (por lo que despejando s=ør w=diferencial de ø / diferencial de tiempo α=wf-wi / diferencial de tiempo Conversiones: 50 rpm= 50 rev/min * 2π rad / 1 rev * 1 min /60 seg = 5.23 rad/s 50 rev * 2π rad / 1 rev = 314.16 rad s=(314.16 rad)(0.3683 m)=115.70 m α=(10.66 – 5.23) / 10=0.523 s² REALIZA LOS SIGUIENTES EJERCICIOS, COMPARA TUS RESULTADOS CON TUS COMPAÑEROS (Y CONTRA LA CALCULADORA ARRIBA), PREGÚNTALE A TU PROFESOR: 86 ~ 87 ~ 1.- Un proyectil es disparado con una rapidez inicial de 75.2 m/s, a un ángulo de 34.5° por encima de la horizontal a lo largo de un campo de tiro plano. Calcule? a) La máxima altura alcanzada por el proyectil. b) El tiempo total que el proyectil permanece en el aire c) La distancia horizontal total que recorre el proyectil d) La velocidad de X y Y del proyectil después de 1.5 s de haber sido disparado 2.- Una flecha se dispara con un ángulo de 50° con respecto a la horizontal y con una velocidad de 35 m/s. a) ¿Cuál es su posición horizontal y vertical después de 4 segundos? b) Determine las componentes de su velocidad después de 4 segundos. 3- Una piedra se arroja horizontalmente a 15 m/s desde la parte más alta de un risco de 44 m de altura. a) ¿Qué tiempo tarda la piedra en llegar a la base del risco? b) ¿Qué tan lejos de la base del risco choca la piedra con el piso? c) ¿Cuál su velocidad horizontal después de 1.5 segundos? 4- Una pelota de golf se golpea con un ángulo de 45° con la horizontal. Si la velocidad inicial de la pelota es de 50 m/s: a) ¿Cuánto tiempo permanece la pelota en el aire? b) ¿Cuál su altura máxima? c) ¿Cuál su alcance horizontal? 87 ~ 88 ~ 5- Se lanza un proyectil con una velocidad inicial de 200 m/s y una inclinación, sobre la horizontal, de 30°. Suponiendo despreciable la pérdida de velocidad con el aire, calcular: a) ¿Cuál es la altura máxima que alcanza la bala? b) ¿A qué distancia del lanzamiento alcanza la altura máxima? c) ¿A qué distancia del lanzamiento cae el proyectil? 6- Se dispone de un cañón que forma un ángulo de 60° con la horizontal. El objetivo se encuentra en lo alto de una torre de 26 m de altura y a 200 m del cañón. Determinar: a) ¿Con qué velocidad debe salir el proyectil? b) Con la misma velocidad inicial ¿desde que otra posición se podría haber disparado? 7- Un chico patea una pelota contra un arco con una velocidad inicial de 13 m/s y con un ángulo de 45° respecto del campo, el arco se encuentra a 13 m. Determinar: a) ¿Qué tiempo transcurre desde que patea hasta que la pelota llega al arco? b) ¿Convierte el gol?, ¿por qué? c) ¿A qué distancia del arco picaría por primera vez? 8- Sobre un plano inclinado que tiene un ángulo α = 30°, se dispara un proyectil con una velocidad inicial de 50 m/s y formando un ángulo β = 60° con la horizontal. Calcular en que punto del plano inclinado pegará. 88 ~ 89 ~ 9- Un cañón que forma un ángulo de 45° con la horizontal, lanza un proyectil a 20 m/s, a 20 m de este se encuentra un muro de 21 m de altura. Determinar: a) ¿A qué altura del muro hace impacto el proyectil? b) ¿Qué altura máxima logrará el proyectil? c) ¿Qué alcance tendrá? d) ¿Cuánto tiempo transcurrirá entre el disparo y el impacto en el muro? 10- Un mortero dispara sus proyectiles con una velocidad inicial de 800 km/h, ¿qué inclinación debe tener el mortero para que alcance un objetivo ubicado a 4000 m de este? 89 ~ 90 ~ ANEXOS DESCRIPCIÓN DE ALGUNOS TÉRMINOS COMUNES Masa.- La masa, en física, es una medida de la cantidad de materia que posee un cuerpo.1 Es una propiedad intrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gravitacional. La unidad utilizada para medir la masa en el Sistema Internacional de Unidades es el kilogramo (kg). Es una magnitud escalar. No debe confundirse con el peso, que es una magnitud vectorial que representa una fuerza. Tampoco debe confundirse con la cantidad de sustancia, cuya unidad en el Sistema Internacional de Unidades es el mol. ~ 91 ~ Peso.- En física clásica, el peso es una medida de la fuerza gravitatoria que actúa sobre un objeto.1 El peso equivale a la fuerza que ejerce un cuerpo sobre un punto de apoyo, originada por la acción del campo gravitatorio local sobre la masa del cuerpo. Por ser una fuerza, el peso se representa como un vector, definido por su módulo, dirección y sentido, aplicado en el centro de gravedad del cuerpo y dirigido aproximadamente hacia el centro de la Tierra. Por extensión de esta definición, también podemos referirnos al peso de un cuerpo en cualquier otro astro (Luna, Marte,...) en cuyas proximidades se encuentre. ~ 92 ~ Aceleración.- En física, la aceleración es una magnitud vectorial que nos indica el cambio de velocidad por unidad de tiempo. En el contexto de la mecánica vectorial newtoniana se representa normalmente por o y su módulo por . Sus dimensiones son . Su unidad en el Sistema Internacional es el m/s2. En la mecánica newtoniana, para un cuerpo con masa constante, la aceleración del cuerpo es proporcional a la fuerza que actúa sobre él mismo (segunda ley de Newton): Donde F es la fuerza resultante que actúa sobre el cuerpo, m es la masa del cuerpo, y a es la aceleración. La relación anterior es válida en cualquier sistema de referencia inercial. ~ 93 ~ Gravedad.- La gravedad es una de las cuatro interacciones fundamentales. Origina la aceleración que experimenta un cuerpo físico en las cercanías de un objeto astronómico. También se denomina interacción gravitatoria o gravitación. Por efecto de la gravedad tenemos la sensación de peso. Si estamos situados en las proximidades de un planeta, experimentamos una aceleración dirigida hacia la zona central de dicho planeta —si no estamos sometidos al efecto de otras fuerzas. En la superficie de la Tierra, la aceleración originada por la gravedad es 9,81 m/s2, aproximadamente. Albert Einstein demostró que: «Dicha fuerza es una ilusión, un efecto de la geometría del espacio-tiempo. La Tierra deforma el espacio-tiempo de nuestro entorno, de manera que el propio espacio nos empuja hacia el suelo».1 Aunque puede representarse como un campo tensorial de fuerzas ficticias. La gravedad posee características atractivas, mientras que la denominada energía oscura tendría características de fuerza gravitacional repulsiva, causando la acelerada expansión del universo. ~ 94 ~ Fuerza.- En física, la fuerza es una magnitud física que mide la intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas (en lenguaje de la física de partículas se habla de interacción). Según una definición clásica, fuerza es todo agente capaz de modificar la cantidad de movimiento o la forma de los materiales. No debe confundirse con los conceptos de esfuerzo o de energía. En el Sistema Internacional de Unidades, la unidad de medida de fuerza es el newton, neutonio o neutón (símbolo: N), nombrada así en reconocimiento a Isaac Newton por su aportación a la física, especialmente a la mecánica clásica. El newton es una unidad derivada que se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s2 a un objeto de 1 kg de masa. ~ 95 ~ Partícula.- En química y física, una partícula puede ser: una partícula de un cuerpo es la menor porción de materia de ese cuerpo que conserva sus propiedades químicas. Pueden ser átomos, iones, moléculas o pequeños grupos de las anteriores especies químicas. Movimiento Rectilíneo Uniforme (MRU).- Un movimiento es rectilíneo cuando el móvil describe una trayectoria recta, y es uniforme cuando su velocidad es constante en el tiempo, dado que su aceleración es nula. Nos referimos a él mediante el acrónimo MRU. ~ 96 ~ Movimiento Rectilíneo Uniformemente Acelerado (MRUA).- El movimiento rectilíneo uniformemente acelerado (MRUA), también conocido como movimiento rectilíneo uniformemente variado (MRUV), es aquel en el que un móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración constante. Un ejemplo de este tipo de movimiento es el de caída libre vertical, en el cual la aceleración interviniente, y considerada constante, es la que corresponde a la gravedad. ~ 97 ~ Caída Libre.- En física, se denomina caída libre al movimiento de un cuerpo bajo la acción exclusiva de un campo gravitatorio. Esta definición formal excluye a todas las caídas reales influenciadas en mayor o menor medida por la resistencia aerodinámica del aire, así como a cualquier otra que tenga lugar en el seno de un fluido; sin embargo es frecuente también referirse coloquialmente a éstas como caídas libres, aunque los efectos de la viscosidad del medio no sean por lo general despreciables. ~ 98 ~ Distancia y Desplazamiento.La distancia se refiere a cuanto espacio recorre un objeto durante su movimiento. Es la cantidad movida. También se dice que es la suma de las distancias recorridas. Por ser una medida de longitud, la distancia se expresa en unidades de metro según el Sistema Internacional de Medidas. Al expresar la distancia, por ser una cantidad escalar, basta con mencionar la magnitud y la unidad. Imagina que comienzas a caminar siguiendo la trayectoria: ocho metros al norte, doce metros al este y finalmente ocho metros al sur. Luego del recorrido, la distancia total recorrida será de 28 metros. El número 28 representa la magnitud de la distancia recorrida. El desplazamiento se refiere a la distancia y la dirección de la posición final respecto a la posición inicial de un objeto. Al igual que la distancia, el desplazamiento es una medida de longitud por lo que el metro es la unidad de medida. Sin embargo, al expresar el desplazamiento se hace en términos de la magnitud con su respectiva unidad de medida y la dirección. El desplazamiento es una cantidad de tipo vectorial. Los vectores se describen a partir de la magnitud y de la dirección. Vamos a considerar la misma figura del ejemplo anterior. ~ 99 ~ Rapidez y Velocidad.Rapidez y Velocidad son dos magnitudes cinemáticas que suelen confundirse con frecuencia, recuerda que la distancia recorrida y el desplazamiento son dos magnitudes diferentes. Precisamente por eso, cuando relacionamos con el tiempo, también obtenemos dos magnitudes diferentes. La rapidez es una magnitud escalar que relaciona la distancia recorrida con el tiempo. La velocidad es una magnitud vectorial que relaciona el cambio de posición (o desplazamiento) con el tiempo. ~ 100 ~ Notación científica.- La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se utiliza para poder expresar muy fácilmente números muy grandes o muy pequeños. Los números se escriben como un producto: Siendo: Un número real mayor o igual que 1 y menor que 10, que recibe el nombre de coeficiente. Un número entero, que recibe el nombre de exponente u orden de magnitud. FORMULARIO: 1.- Para hacer conversiones de unidades, recuerda; debes multiplicar la cantidad que quieres convertir por una equivalencia, cuidando de que las unidades a eliminar queden “encontradas” (una arriba y una abajo). Ej. 60 km a metros? equivalencia 1 km=1000 m 60 km * 1000 m /1 km= 60000 m 2.- Si tenemos un triangulo “recto”, podemos conocer sus lados y ángulo así: ~ 101 ~ (Recuerda la suma de los tres ángulos internos de un triangulo, siempre debe sumar 180°) c a ø b Pitágoras: c²=a²+b² senø=a/c cosø=b/c tanø=a/b 3.- Para sumar vectores con inclinaciones diferentes, debes descomponer cada vector en sus componentes “x” y en sus componentes “y” y hasta entonces sumar algebraicamente “x” con “x” y “y” con “y” (luego usa Pitágoras para sacar la resultante y la tanø para conocer su inclinación) 4.- MRU (movimiento rectilíneo uniforme, “no hay aceleración, la velocidad es constante) v=d/t d=vt t=d/v ~ 102 ~ v=velocidad d=distancia (metros) t=tiempo (segundos) 5.- MRUA (movimiento rectilíneo uniformemente acelerado, “la velocidad va cambiando, porque SI hay aceleración”) (Ecuación de aceleración) a=(Vf-Vo) / t Vf=Vo + at Vo=Vf – at t=(Vf-Vo) / a a=aceleración (m/s²) Vf=velocidad final (m/s) Vo=velocidad inicial (m/s) t=tiempo (s) (Ecuación de desplazamiento) x=Vo (t) + ½ a (t)² Vo=(x- ½ at²) / t a= 2(x-Vot) / t² (Ecuación de la velocidad final) (Vf)²=(Vo)² + 2ax (Vo)²=(Vf)² - 2ax a=(vf²-Vo²) / (2x) ~ 103 ~ x=(Vf²-Vo²) / (2a) a=aceleración (m/s²) Vf=velocidad final (m/s) Vo=velocidad inicial (m/s) t=tiempo (s) x=Distancia (m) 6.- Caída libre (movimiento vertical, la aceleración es igual a la gravedad, g= 9.81 m/s² en la tierra) Ecuación de tiempo t=(Vf-Vo) / g t=√(2h/g) Ecuación de altura h=Vo t + ½ g t² Ecuación de velocidad final Vf=Vo + gt Ecuación de la velocidad final cuadrada Vf²=Vo² + 2gh 7.- Tiro libre vertical hacia arriba Es el tiro contrario a la caída libre por lo que deberás tener cuidado con la dirección en que van los objetos para que sumes o restes según corresponda (recuerda la ~ 104 ~ gravedad SIEMPRE actúa hacia abajo. Podemos entonces decir que si dejamos caer un objeto en caída libre su velocidad se ira incrementando conforme pasa el tiempo, y al revés si lanzamos una pelota hacia arriba, podemos entonces decir que su velocidad ira disminuyendo conforme pasa el tiempo) Vf=Vo-gt t=(Vf-Vo) / (-g) h=(Vf²-Vo²) / (-2g) Vo=√(2gh) Vf=velocidad final (m/s) Vo=velocidad inicial (m/s) g=gravedad (m/s²) h=altura (m) t=tiempo (s) 8.-Tiro parabólico horizontal Vo ~ 105 ~ Este tipo de movimiento involucra dos tipos de movimiento: a) el movimiento horizontal (para lo cual te tienes que auxiliar con las formulas de MRU) b) y el movimiento vertical en caída libre (para lo cual te tienes que auxiliar con las formulas de este movimiento de caída libre) 9.- Tiro parabólico oblicuo Vo Este tipo de movimiento involucra tres tipos de movimiento: a) el movimiento horizontal (para lo cual te tienes que auxiliar con las formulas de MRU) b) el movimiento de tiro vertical hacia arriba (cuida los signos) b) el movimiento vertical en caída libre (para lo cual te tienes que auxiliar con las formulas de este movimiento de caída libre) (Ojo: este tipo de problemas hazlo paso por paso, es decir analiza: 1.- Lo que pasa desde que se lanza el objeto hasta que alcanza su altura máxima 2.- lo que pasa desde que alcanza su altura máxima hasta que llega al suelo 3.- Conociendo el tiempo que pasa en el aire, entonces podrás aplicar las formulas del MRU (NO SE TE OLVIDE descomponer la velocidad en sus componentes “x” y “y”, recuerda no mezcles. ~ 106 ~ PRONTUARIO DE LA MATERIA DE FISICA I: CONCEPTOS Y PROBLEMAS RESUELTOS COLEGIO DE BACHILLERES DEL ESTADO DE BAJA CALIFORNIA SUR DIRECTOR GENERAL / ING. ROBERTO PANTOJA CASTRO DIRECTOR ACADEMICO / ING. JOSE ARTURO HERNANDEZ HERNANDEZ PRONTUARIO ELABORADO POR: JEFATURA DE MATERIAS DE FÍSICA / ING.ALFONSO MARTINEZ LLANTADA (ESTE PRONTUARIO ES UN COMPENDIO DE DIFERENTES FUENTES DE INFORMACIÓN EXTERNAS E INTERNAS PROPORCIONADOS POR PROFESORES DEL COLEGIO Y NO ESTÁ ELABORADO CON FINES DE LUCRO SOLO CON FINES EDUCATIVOS HACIA ESTUDIANTES DE LA INSTITUCIÓN)