Download 1) Un par de lámparas delanteras de un automovil son conectadas
Document related concepts
no text concepts found
Transcript
TEORÍA DE CIRCUITOS I T.P. Nº 14 TRANSFORMADA DE LAPLACE TEORÍA DE CIRCUITOS I –EE016– DEPARTAMENTO DE ELÉCTRÓNICA – FACULTAD DE INGENIERÍA – U.N.P.S.J.B. 1) En el circuito mostrado en la figura 14-19, el interruptor 1 se cierra en t = 0 y entonces, a t = t’ = 4 ms, el interruptor 2 se abre. Encuéntrese la corriente en los intervalos 0 < t < t’ y t > t’. Rta i = 2 ( 1 – e-500t ) (A), i = 1.06 e-(1500(t-t’) + 0.667 (A) 2) En el circuito RL en serie mostrado en la figura 14-20, el interruptor se cierra en la posición 1 a t = 0 y entonces, a t = t' = 50 s, se mueve a la posición 2. Encuéntrese la corriente en los intervalos 0 < t < t' y t > t'. Rta i = 0.1(1- e-2000t) (A), i = -0.03 e-2000 (t-t’) + 0.05 (A) 3) Un circuito RC en serie, con R = 10 y C = 4 F, tiene una carga inicial Qo = 800 C en el capacitor al tiempo en que el interruptor se cierra, aplicando una fuente de voltaje constante V = 100 V. Encuéntrese el transitorio de la corriente resultante si la carga es (a) de la misma polaridad que la depositada por la fuente, y ( b ) de polaridad opuesta. Rta ( a ) i = - l0e-25000t (A), (b) i= 30e-25000t (A) 4) Un circuito RC en serie, con R = 1 k y C = 20 F, tiene una carga inicial Qo en el capacitor al tiempo en que el interruptor se cierra, aplicando una fuente de voltaje constante V = 50 V. Si la corriente resultante es i = 0.075e -50t (A), encuéntrese la carga Qo y su polaridad. Rta 500 C, polaridad opuesta a la depositada por la fuente. 1 TEORÍA DE CIRCUITOS I T.P. Nº 14 TRANSFORMADA DE LAPLACE TEORÍA DE CIRCUITOS I –EE016– DEPARTAMENTO DE ELÉCTRÓNICA – FACULTAD DE INGENIERÍA – U.N.P.S.J.B. 5) En el circuito RC mostrado en la figura 14-21, el interruptor se cierra en la posición 1 en t = 0 y entonces, en t = t’ = se mueve a la posición 2. Encuéntrese el transitorio de corriente en los intervalos 0 < t < t’ y t > t’. Rta i = 0.5e-200t (A), i = -0.116e-200(t-t’) (A) 6) En el circuito de la figura 14.22, Qo = 300 C al tiempo que e1 interruptor se cierra. Encuéntrese el transitorio de corriente resultante. Rta i = 2.5e-25000t (A) 7) En el circuito mostrado en la figura 14-23, el capacitor tiene una carga inicial de Qo = 25 C y la fuente de voltaje senoidal es v = 100sen (1000t + ) (V). Encuéntrese 1a corriente resultante si el interruptor se cierra en un tiempo correspondiente a t + = 30o. Rta i = 0.1535e-4000t + 0.0484 sen ( l000t + 106º) (A) 2 TEORÍA DE CIRCUITOS I T.P. Nº 14 TRANSFORMADA DE LAPLACE TEORÍA DE CIRCUITOS I –EE016– DEPARTAMENTO DE ELÉCTRÓNICA – FACULTAD DE INGENIERÍA – U.N.P.S.J.B. 8) Un circuito RLC en serie, con R = 5 , L = 0.1 H, y C = 500 F, tiene voltaje constante V = 10 V que es aplicado en el instante t = 0. Encuéntrese la corriente resultante. Rta i = 0.72e-25t sen 139t (A) 9) En el circuito RLC de la figura 14-24, el capacitor tiene una carga inicial Qo = 1 mC y el interruptor está en la posición 1 el tiempo suficiente para establecer el estado estable. Encuéntrese el transitorio de corriente que resulta cuando el interruptor se mueve de la posición 1 a la 2 en t = 0. Rta i = e-25t ( 2 cos 222t - 0.45 sen 222t ) (A ). 10) Un circuito RLC en serie, con R = 5 , L = 0.2 H, y C = 1 F, tiene una fuente de voltaje v = l0e-100t (V) que se aplica en t = 0 (Los elementos no almacenan energía en t<0). Encuéntrese la corriente resultante. Rta i = 0.666e-100t + 0.670e-24.8t - 0.004e-0.2t (A) 11) Un circuito RLC en serie, con R = 200 , L = 0.5 H, y C = 100 F, tiene una fuente de voltaje senoidal v = 300 sen ( 500t + ) ( V ) . Encuéntrese la corriente resultante si el interruptor se cierra en el instante correspondiente a t + = 30º. Rta i = 0.517e-0341.4t - 0,197e-58.6t + 0.983 sen (500t – 19º) (A) 12) Un circuito RLC en serie, con R = 5 , L = 0.1 H, y C = 500 F, tiene una fuente de voltaje senoidal v = 100 sen 250t ( V ) . Encuéntrese la corriente resultante si el interruptor se cierra al t = 0. Rta i = e-25t ( 5.42 cos 139t + 1.89 sen 139t ) + 5.65 sen ( 250t - 73.6º ) ( A ) 3 TEORÍA DE CIRCUITOS I T.P. Nº 14 TRANSFORMADA DE LAPLACE TEORÍA DE CIRCUITOS I –EE016– DEPARTAMENTO DE ELÉCTRÓNICA – FACULTAD DE INGENIERÍA – U.N.P.S.J.B. 13) En la red de dos mallas de la figura 14-25 las corrientes se seleccionan como se muestra en el diagrama. Escríbanse las ecuaciones en el dominio de tiempo, transfórmense en las ecuaciones correspondientes en el dominio s y obténganse las corrientes i1 e i2. Rta i1 = 2.5 ( 1 + e-100000t) (A), i2 = 5 e-100000t (A) 14) Para la red de dos mallas mostrada en la figura 14-26, encuéntrense las corrientes i1 e i2 que resultan cuando el interruptor se cierra en t = 0. Rta i1 = -0.05-100t + 10.05e-9950t (A) , i2 = -5.05e-100t + 5 + 0.05e-9950t (A) 15) La red de dos mallas mostrada en la figura 14-28 contiene una fuente de voltaje senoidal v = 100 sen ( 200t + ) V. El interruptor se cierra en un instante en el que el incremento de voltaje es máximo. Encuéntrense las corrientes de mallas resultantes, con las direcciones que se muestran en el diagrama. Rta i1 = 3.0le-100t + 8.96 sen (200t +26.5o ) (A) i2 = 1.505e-100t + 4.48 sen (200t+26.5o) (A) 4