Download Distribución de probabilidad
Document related concepts
Transcript
Distribución de probabilidad Saltar a: navegación, búsqueda La distribución Normal suele conocerse como la "campana de Gauss". En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos, cada uno de los sucesos es el rango de valores de la variable aleatoria. Definición distribución Normal formal Hay varios modos de definir formalmente una distribución de probabilidad. La forma más visual es mediante su función de densidad. De forma equivalente, también pueden darse para su definición la función de distribución, los momentos, la función característica y la función generatriz de momentos, entre otros. Función de densidad Se dice que una variable aleatoria continua X sigue una distribución normal de parámetros μ y σ y se denota X~N(μ, σ) si su función de densidad está dada por: donde μ (mu) es la media y σ (sigma) es la desviación estándar (σ2 es la varianza).5 Se llama distribución normal "estándar" a aquélla en la que sus parámetros toman los valores μ = 0 y σ = 1. En este caso la función de densidad tiene la siguiente expresión: Su gráfica se muestra a la derecha y con frecuencia se usan tablas para el cálculo de los valores de su distribución. Distribución de Poisson En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo. Fue descubierta por Siméon-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles). Propiedades La función de masa de la distribución de Poisson es donde k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces). λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40. e es la base de los logaritmos naturales (e = 2,71828...) Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Distribución t de Student En probabilidad y estadística, la distribución t (de Student) es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño. Aparece de manera natural al realizar la prueba t de Student para la determinación de las diferencias entre dos medias muestrales y para la construcción del intervalo de confianza para la diferencia entre las medias de dos poblaciones cuando se desconoce la desviación típica de una población y ésta debe ser estimada a partir de los datos de una muestra. Distribución t de Student Función de densidad de probabilidad Función de distribución de probabilidad Parámetros grados de libertad (real) Dominio Función de densidad (pdf) Función de distribución donde (cdf) es la función hipergeométrica para Media , indefinida para otros valores Mediana Moda para Varianza , indefinida para otros valores caracterización La distribución t de Student es la distribución de probabilidad del cociente donde Z tiene una distribución normal de media nula y varianza 1 V tiene una distribución ji-cuadrado con grados de libertad Z y V son independientes Si μ es una constante no nula, el cociente es una variable aleatoria que sigue la distribución t de Student no central con parámetro de no-centralidad . Aparición y especificaciones de la distribución t de Student Supongamos que X1,..., Xn son variables aleatorias independientes distribuidas normalmente, con media μ y varianza σ2. Sea la media muestral. Entonces sigue una distribución normal de media 0 y varianza 1. Sin embargo, dado que la desviación estándar no siempre es conocida de antemano, Gosset estudió un cociente relacionado, donde es la varianza muestral y demostró que la función de densidad de T es donde es igual a n − 1. La distribución de T se llama ahora la distribución-t de Student. El parámetro representa el número de grados de libertad. La distribución depende de , pero no de o , lo cual es muy importante en la práctica.